摘要 — 了解药物的意外作用对于评估治疗风险和药物再利用至关重要。尽管现有的大量研究预测了药物副作用的存在,但其中只有四项研究预测了副作用的频率。不幸的是,目前的预测方法 (1) 没有利用药物靶标,(2) 不能很好地预测看不见的药物,(3) 没有使用多种异构药物特征。我们提出了一种基于深度学习的新型药物副作用频率预测模型。我们的模型利用靶蛋白信息以及分子图、指纹和化学相似性等异构特征同时创建药物嵌入。此外,该模型将药物和副作用表示到一个公共向量空间中,分别学习药物和副作用的对偶表示向量。我们还使用 Adaboost 方法扩展了我们模型的预测能力,以补偿没有明确靶蛋白的药物。我们在预测副作用频率方面取得了优于现有方法的最佳性能,尤其是对于看不见的药物。消融研究表明,我们的模型有效地结合并利用了药物的异质性特征。此外,我们观察到,当给出目标信息时,具有明确目标的药物比没有明确目标的药物产生更好的预测。实现可在 https://github.com/eskendrian/sider 上找到。
摘要:基于卡尔曼滤波(KF)框架和机器学习算法的电池等效电路模型荷电状态(SOC)估计研究相对有限,大部分研究仅针对少数几种机器学习算法,缺乏全面的分析比较,且大部分研究侧重于通过机器学习算法获取卡尔曼滤波框架算法模型的状态空间参数,再将状态空间参数代入卡尔曼滤波框架算法中进行SOC估计,此类算法耦合性强,复杂度高,实用性不强。本研究旨在将机器学习与卡尔曼滤波框架算法相结合,将五种卡尔曼滤波框架算法的输入、输出和中间变量值的不同组合作为六种主流机器学习算法的输入,估计最终的SOC。这六种主流机器学习算法包括:线性回归、支持向量回归、XGBoost、AdaBoost、随机森林、LSTM;算法耦合度较低,无需进行双向参数调整,且不涉及机器学习与卡尔曼滤波框架算法之间。结果表明,集成学习算法与纯卡尔曼滤波框架或机器学习算法相比,估计精度有显著提高。在各类集成算法中,随机森林与卡尔曼滤波框架的估计精度最高,且实时性好。因此,可以在各种工程应用中实现。
解决分类和预测挑战,树木集成模型已获得了重要的重要性。促进集合技术是用于预测II型糖尿病的综合技术。光梯度提升机(LightGBM)是一种以其叶片生长策略,减少损失和增强的训练精度而闻名的算法。但是,LightGBM容易过度拟合。相比之下,Catboost使用了称为决策表的平衡基础预测值,该预测值可以减轻过度适应风险,并明显提高测试时间效率。catboost的算法结构抵消了梯度增强偏见,并结合了过度拟合的检测器以尽早停止训练。本研究的重点是开发一种混合模型,该模型结合了LightGBM和Catboost,以最大程度地减少过度拟合并通过降低方差改善效果。为了找到与基础学习者一起使用的最佳超级仪表,使用了贝叶斯超级参数操作方法。通过微调正则化参数阀,混合模型有效地降低了方差(过拟合)。针对LightGBM,Catboost,Xgboost,Deciest Crey,Random Forest,Adaboost和GBM算法的比较评估表明,混合模型具有最佳的F1得分(99.37%),召回率(99.25%)和准确性(99.37%)。因此,拟议中的框架对医疗保健行业的早期糖尿病有望有望,并显示出与糖尿病共享相似性的其他数据集的潜在适用性。
摘要背景:中西药联用增加了所摄入化合物的复杂性。目的:利用人工智能方法开发一种基于化学结构的中西药肝毒性化合物筛选方法。方法:从公开数据库和发表的文献中收集药物性肝损伤(DILI)数据。将DILI数据形成的整个数据集以大约3:1的比例随机分为训练集和测试集。采用SGD(随机梯度下降)、kNN(k最近邻)、SVM(支持向量机)、NB(朴素贝叶斯)、DT(决策树)、RF(随机森林)、ANN(人工神经网络)、AdaBoost、LR(逻辑回归)和一种深度学习模型(深度信念网络,DBN)构建肝毒性化合物筛选模型。结果:本研究共收集了2035个肝毒性化合物数据集,其中1505个化合物作为训练集,530个化合物作为测试集。结果表明,RF在训练集上的分类准确率(CA)为0.838,F1-score为0.827,Precision为0.832,Recall为0.838,曲线下面积(AUC)为0.814;在测试集上的分类准确率(CA)为0.767,F1为0.731,Precision为0.739,Recall为0.767,AUC为0.739,优于其他8种机器学习方法。DBN在测试集上的分类准确率为82.2%,高于其他任何机器学习模型。
在细胞的监督分类中优化特征提取和分类器的组合组合Xhoena polisi duro 1,2*,Arban UKA 2,Griselda alushllari 2,Albana Ndreu Halili 3,Dimitrios A. Karras A. Karras A. Karras 2,Nihal Engin vrana vrana 4 1 Informatics obs s. noli oblia,“ fan nori”,koria,koria,koria,korica,korica,korica,korka,korka,“ korcua”。 xpolisi@epoka.edu.al(X.P.D.)。2埃波卡大学计算机工程系,阿尔巴尼亚蒂拉纳市; auka@epoka.edu.al(a.u.)galushllari@epoka.edu.al(G.A。)dkarras@epoka.edu.al(d.a.k.)3西巴尔干大学医学系,阿尔巴尼亚提拉娜; albana.halili@wbu.edu.al(a.n.h。) 4法国斯特拉斯堡的Spartha Medical; evrana@sparthamedical.eu(N.E.V.) 摘要:医学领域的发展已经开放了在个性化患者层面进行分析的机会。 可以进行的重要分析之一是对工程材料的细胞反应,最合适的非侵入性方法是成像。 这些细胞的图像是未染色的Brightfield图像,因为在存在生物材料和流体的情况下,它们是从多参数微流体室获取的,这些室可能会随着时间的流逝而改变光路的长度,因为细胞的健康状态被监测。 这些实验条件导致具有独特照明,纹理和噪声频谱的图像数据集。 本研究通过将特征提取体系结构和机器学习分类器结合起来,探讨了监督细胞分类的优化,并重点介绍了生物材料风险评估中的应用。 1。 简介3西巴尔干大学医学系,阿尔巴尼亚提拉娜; albana.halili@wbu.edu.al(a.n.h。)4法国斯特拉斯堡的Spartha Medical; evrana@sparthamedical.eu(N.E.V.)摘要:医学领域的发展已经开放了在个性化患者层面进行分析的机会。可以进行的重要分析之一是对工程材料的细胞反应,最合适的非侵入性方法是成像。这些细胞的图像是未染色的Brightfield图像,因为在存在生物材料和流体的情况下,它们是从多参数微流体室获取的,这些室可能会随着时间的流逝而改变光路的长度,因为细胞的健康状态被监测。这些实验条件导致具有独特照明,纹理和噪声频谱的图像数据集。本研究通过将特征提取体系结构和机器学习分类器结合起来,探讨了监督细胞分类的优化,并重点介绍了生物材料风险评估中的应用。1。简介分析了三种细胞类型(A549,BALB 3T3和THP1)的Brightfield显微镜图像,以评估Inception V3,Squeeze Net和VGG16架构与分类器与包括KNN,决策树,随机森林,Adaboost,Adaboost,Neural Networks和Natan bayes的分类器配对的影响的影响。使用信息增益降低维度,以提高计算效率和准确性。使用不同参数的Butterworth过滤器用于平衡图像特征和降噪的增强,从而在某些情况下提高了分类性能。实验结果表明,与神经网络配对时,VGG16体系结构可实现通过不同指标衡量的更高分类精度。与未经过滤的数据集相比,使用Butterworth过滤器时的精度提高了,并且各种Butterworth滤波器之间的差异表明了优化这些类型图像的过滤器参数的重要性。关键字:生物材料风险评估,细胞图像分类,分类器,特征提取,个性化医学,监督分类。
本研究探索了将量子数据嵌入技术集成到经典机器学习 (ML) 算法中,旨在评估一系列模型的性能增强和计算影响。我们探索了各种经典到量子的映射方法,从基础编码、角度编码到幅度编码,对于编码经典数据,我们进行了一项广泛的实证研究,涵盖了流行的 ML 算法,包括逻辑回归、K 最近邻、支持向量机和集成方法,如随机森林、LightGBM、AdaBoost 和 CatBoost。我们的研究结果表明,量子数据嵌入有助于提高分类准确性和 F1 分数,尤其是在本质上受益于增强特征表示的模型中。我们观察到对运行时间的细微影响,低复杂度模型表现出适度的增加,而计算密集型模型则经历明显的变化。值得注意的是,集成方法在性能提升和计算开销之间表现出良好的平衡。这项研究强调了量子数据嵌入在增强传统 ML 模型方面的潜力,并强调了权衡性能改进与计算成本的重要性。未来的研究方向可能涉及改进量子编码过程以优化计算效率,并探索现实世界应用的可扩展性。我们的工作为量子计算和传统机器学习交叉领域的知识体系的不断增长做出了贡献,为寻求在实际场景中利用量子启发技术优势的研究人员和从业者提供了见解。
摘要不规则的脑细胞的生长导致一种称为脑肿瘤(BT)的疾病。由于较低的肿瘤形状速率和范围很大,很难预测患者的生存机会。即使可以手动检测到癌症,也很困难且耗时,并且有产生假阳性结果的风险。这可以通过MRI完成,这是定位癌症所必需的。很难通过计算机辅助诊断系统可靠地可靠地识别MRI图像从MRI图像中识别出不同的疾病。在实验中,使用了三个公开访问的基准数据集。要在我们提出的方法中执行特征提取,采用了CNN模型,随后应用五个机器学习分类器:决策树(DT),天真贝叶斯(NB),自适应增强(ADABOOST),K-Nearest邻居(KNN)和支持向量机(SVM)。结果表明,通过在各种分类指标下优于其他尖端DL模型,提出的使用KNN分类器的CNN体系结构的性能要比以前的CNN模型更好。最后,所达到的F1得分,精度,召回和所提出模型的分类和检测的准确性值分别为99.58%,99.59%,99.58%和99.58%。进行比较研究,使用了其他转移学习模型。实验发现支持所提出的体系结构的强度,该结构已迅速加速并改善了BT的分类。设计的方法优于现有知识的主体,表明它是对BTS进行分类的快速而精确的方法。
随着沙特阿拉伯糖尿病患病率的日益增长,迫切需要早期发现和预测该疾病以防止长期健康并发症。TIS研究通过使用机器学习(ML)技术来解决这一需求,该技术通过实现用于预测糖尿病的计算机化系统,应用于PIMA Indians数据集和私人糖尿病数据集。与先前的研究相反,本研究采用了半佩斯的模型,结合了强大的梯度提升,有效地预测了数据集的糖尿病相关特征。此外,研究人员采用了SMOTE技术来处理不平衡的类别。十种ML分类技术,包括逻辑回归,随机森林,KNN,决策树,包装,Adaboost,Xgboost,Xgboost,投票,SVM和Naive Bayes,以确定产生最准确的糖尿病预测的算法。提议的方法取得了令人印象深刻的表现。对于私有数据集,带有SMOTE的XGBoost算法的精度为97.4%,F1系数为0.95,AUC为0.87。对于组合数据集,它的精度为83.1%,F1系数为0.76,AUC为0.85。要了解模型如何预测FNAL结果,实现了使用Shap方法解释的AI技术。此外,该研究通过应用域适应方法证明了所提出的系统的适应性。为了进一步增强可访问性,已经为基于用户输入功能的即时糖尿病预测开发了移动应用程序。TIS研究为基于ML的糖尿病预测而贡献了新的见解和技术,这可能有助于对沙特阿拉伯糖尿病的早期检测和管理。
摘要 — 脑机接口 (BCI) 研究在教育领域引起了关注,它为监测和提高学生的认知状态提供了潜力,本研究的重点是开发一种最佳深度学习模型 ODL-BCI,用于实时分类学生的注意力水平。该模型结合了超参数调整技术,并利用了公开的“困惑的学生 EEG 脑波数据”数据集。我们提出了一种通过贝叶斯优化优化超参数的深度学习模型。该模型的架构由一个输入层、几个隐藏层和一个输出层构成。隐藏层中的节点数和激活函数是使用贝叶斯优化确定的。每一层的学习率也进行了优化。在 EEG 混淆数据集上,对所提出的模型进行了评估,并与几种标准机器学习分类器进行了比较,包括决策树、AdaBoost、Bagging、MLP、朴素贝叶斯、随机森林、SVM 和 XG Boost。实验结果表明,优化后的深度学习模型优于所有其他分类器,准确率达到 74%。该模型在准确分类学生注意力水平方面的有效性凸显了其作为教育环境中宝贵工具的潜力。这项研究促进了 BCI 技术的进步,为基于 EEG 的认知评估的深度学习模型的优化提供了见解。未来的工作包括探索该模型在更大数据集上的通用性,并将其适用性扩展到其他 BCI 应用程序。
Trailokya Raj Ojha* 尼泊尔工程学院计算机科学与工程系助理教授,44800 巴克塔普尔,尼泊尔 电子邮件:trailikyaro@nec.edu.np ORCID iD:https://orcid.org/0000-0001-7554-1731 *通讯作者 Ashish Kumar Jha 尼泊尔工程学院计算机科学与工程系助理教授,44800 巴克塔普尔,尼泊尔 电子邮件:ashishkj@nec.edu.np ORCID iD:https://orcid.org/0000-0003-4530-1942 收到日期:2022 年 9 月 20 日;修订日期:2022 年 10 月 26 日;接受日期:2022 年 11 月 25 日;出版日期:2023 年 4 月 8 日 摘要:脑中风是一种脑供血不足导致细胞死亡的疾病。由于缺乏血液供应,脑细胞死亡,大脑不同部位出现残疾。近年来,中风已成为死亡和残疾的主要原因之一。对受影响个体的调查显示,有几种风险因素被认为是导致中风的原因。考虑到这些风险因素,已经进行了许多研究工作来对中风进行分类和预测。在这项研究中,我们应用了五种机器学习算法来根据个人的病史和身体活动识别和分类中风。考虑了不同的生理因素,并将其应用于机器学习算法,如朴素贝叶斯、AdaBoost、决策表、k-NN 和随机森林。决策表算法在根据应用数据集中的不同生理因素预测中风方面表现最佳,准确率为 82.1%。机器学习算法可以帮助更好地根据个人的病史和身体活动进行临床中风预测。索引词:脑卒中、机器学习、数据分析、预测