通过预训练的视觉模型进行测试时间适应,引起了越来越多的关注,以应对测试时间的分离转移。尽管事先实现了非常有前途的性能,但它们会进行密集的计算,这与测试时间适应非常不规则。我们设计了TDA,这是一种无训练的动态适配器,可通过视觉模型进行有效,有效的测试时间适应。tda可与轻巧的键值缓存一起使用,该缓存维持具有很少射击伪标签的dy-namic队列作为值,而相应的测试样本特征则是键。杠杆键值缓存,TDA允许通过渐进式伪标签的细化逐渐调整数据,而逐步测试数据,而不会产生任何反向传播。此外,我们引入了负伪标记,即当模型不确定其伪标签预测时,通过将伪标签分配给某些负类时,可以减轻伪标签噪声的不利影响。在两个基准上进行的广泛实验表明,与最先进的艺术品相比,TDA的实体有效性和效率。该代码已在https://kdiaaa.github.io/tda/中发布。
对准确的3D手姿势估计的追求是理解以自我为中心视力领域的人类活动的基石。大多数现有估计方法仍然依赖单视图像作为输入,从而导致潜在的局限性,例如,深度有限的视野和义务。解决这些问题,添加另一个相机以更好地捕获手的形状是实践方向。然而,现有的多视图手姿势姿势方法具有两个主要缺点:1)重新训练的多视图注释,这些注释是备用的。2)在测试过程中,如果相机参数/布局与训练中使用的相同,则模型将变为inpapplicable。在本文中,我们提出了一种新颖的单算观看改编(S2DHAND)解决方案,该解决方案将预先训练的单视估计器适应双视图。与现有的多视图训练方法相比,1)我们的适应过程是无监督的,消除了对多视图注释的需求。2)此外,我们的方法可以处理带有未知相机参数的Arbitarary双视图对,从而使该模型适用于不同的相机设置。具体来说,S2DHAND建立在某些立体声约束上,包括两种视图之间的成对跨视图共识和转换的不变性。这两个立体声约束以互补的方式使用来进行伪标记,从而允许可靠的适应性。评估结果表明,在内部和跨数据库设置下,S2DHAND在任意摄像机对上实现了重大的实现,并且胜过具有领先性能的现有适应方法。项目页面:https://github.com/ut-vision/s2dhand。
将驾驶行为适应新的环境,库斯和法律是自主驾驶中的一个长期问题,排除了澳大利亚车辆(AVS)的广泛部署。在本文中,我们提出了LLADA,这是一种简单而强大的工具,它使人类驾驶员和自动驾驶汽车都可以通过调整其任务和动作计划来在新的地方进行访问规则,从而在任何地方开车。llada通过利用大型语言模型(LLMS)在解释本地驾驶员手册中的流量规则方面的令人印象深刻的零弹性可推广性来实现这一目标。通过广泛的用户研究,我们表明LLADA的说明可用于消除野外野外未受的情况。我们还展示了LLADA在现实世界数据集中适应AV运动计划策略的能力; Llada优于我们所有指标的基线计划。请查看我们的网站以获取更多详细信息:Llada。
颅骨插曲是重要的第一步。基于学习的细分模型(例如U-NET模型)在自动执行此细分任务时显示出令人鼓舞的结果。但是,当涉及到新生儿MRI数据时,在培训这些模型期间,没有任何可公开可用的大脑MRI数据集随着手动注释的segmentment口罩而被用作标签。大脑MR图像的手动分割是耗时,劳动力密集的,需要专业知识。此外,由于成人数据和新生儿数据之间的较大域移动,使用对成人脑MR图像进行训练的分割模型进行分割新生脑图像无效。因此,需要对新生儿大脑MRI的更有效,准确的颅骨剥离方法。在本文中,我们提出了一种无监督的方法,以适应经过成人MRI训练的U-NET颅骨剥离模型,以有效地在新生儿上工作。我们的资产证明了我们新颖的未加剧方法在提高分割准确性方面的有效性。我们提出的方法达到了总体骰子系数为0。916±0。032(平均值±STD),我们的消融研究巩固了我们提议的有效性。非常重要的是,我们的模型的性能与我们进行了综合的当前最新监督模型非常接近。所有代码均可在以下网址提供:https://github.com/abbasomidi77/daunet。这些发现表明,这种方法是一种有价值,更容易,更快的工具,用于支持医疗保健专业人员,以检查新生大脑的先生。
现有的管理高级人工智能系统风险的策略通常侧重于影响开发哪些人工智能系统以及它们如何传播。然而,随着高级人工智能开发者数量的增长,这种方法变得越来越不可行,并且会阻碍有益的用例和有害的用例。作为回应,我们敦促采取一种补充方法:提高社会对高级人工智能的适应性,即减少给定人工智能能力在给定水平的传播所带来的预期负面影响。我们引入了一个概念框架,该框架有助于识别避免、防御和补救人工智能系统潜在有害用途的自适应干预措施,并以选举操纵、网络恐怖主义和人工智能决策者失去控制权为例进行了说明。我们讨论了社会可以实施的适应人工智能的三步循环。提高社会实施这一循环的能力可以增强其对高级人工智能的抵御能力。我们最后向政府、行业和第三方提出了具体的建议。
近年来,基于深度学习的目标检测取得了长足的进步。然而,由于域转移问题,将现成的检测器应用于看不见的域会导致性能大幅下降。为了解决这个问题,本文提出了一种新的由粗到细的特征自适应方法用于跨域目标检测。在粗粒度阶段,与文献中使用的粗糙的图像级或实例级特征对齐不同,采用注意机制提取前景区域,并通过在公共特征空间中多层对抗学习根据其边缘分布进行对齐。在细粒度阶段,我们通过最小化来自不同域但属于同一类别的全局原型的距离来进行前景的条件分布对齐。由于这种由粗到细的特征自适应,前景区域中的领域知识可以得到有效的迁移。在各种跨域检测场景中进行了大量的实验。结果是最先进的,证明了所提出方法的广泛适用性和有效性。
Springer Cham Heidelberg New York Dordrecht London©Springer International Publishing Switzerland 2016这项工作均具有版权。所有权利都是由出版商保留的,无论材料的全部或部分都涉及,都可以涉及翻译,重印,重新使用,插图,朗诵,广播,对微型企业或以任何其他物理方式或任何其他物理方式复制,以及以任何其他物理方式,以及传播或信息存储和检索,电子适应,计算机软件,相似或相似的方法,或者现在已知或不知情的方法。使用一般描述性名称,注册名称,商标,服务标记等。在本出版物中,即使在没有特定陈述的情况下,这种名称也不受相关的保护法律和法规的限制,因此也没有暗示,因此可以免费使用。出版商,作者和编辑可以肯定地假设本书中的建议和信息在出版之日被认为是真实而准确的。关于本文包含的材料或可能犯的任何错误或遗漏,发布者,作者或编辑都没有提供明示或暗示的保修。
本文研究了企业如何根据气候政策的变化调整清洁和肮脏投入的采购。我们使用来自欧盟排放交易体系 (EU ETS) 和碳边境调整机制 (CBAM) 的信息,根据产品是否受到国内或边境碳税的影响,对清洁和肮脏产品进行新的分类。然后,我们将该数据集与 2000 年至 2019 年法国企业的产品级进口数据相结合,并估计企业从非欧盟国家进口肮脏投入的倾向在 2010 年代有所增加,反映了碳泄漏。然后使用异质企业模型来量化在实施碳税和碳关税的情况下企业清洁和肮脏投入采购变化的影响。模拟的 ETS 碳税情景能够匹配数据中观察到的泄漏,并导致价格水平上升和排放量适度下降。进一步包括 CBAM 碳关税的情景以价格进一步上涨为代价逆转了碳泄漏。总体而言,家庭福利下降是因为碳政策带来的高成本超过了减少排放带来的好处。 JEL 分类:F14、F18、F64、H23、Q56 关键词:企业采购、供应链适应、碳税、碳关税、碳泄漏 ________________ Di Giovanni:纽约联邦储备银行,CEPR(电子邮件:juliandigiovanni@gmail.com)。 Coster:南加州大学(电子邮件:pcoster@usc.edu)。 Mejean:巴黎政治学院,CEPR(电子邮件:isabelle.mejean@sciencespo.fr)。 作者感谢巴黎政治学院、纽约联邦储备银行、杜克大学、慕尼黑大学、南加州大学、玛丽女王学院和欧洲工商管理学院的参与者提供的宝贵意见。 他们还感谢 Sotiros Georgousis 和 Neel Lahiri 提供的出色研究协助。 Mejean 非常感谢法国国家研究机构 (ANR) 监督的公共资助,该资助是“Investissements d'Avenir”计划的一部分(Idex 资助协议编号 ANR-11-IDEX-0003-02/Labex ECODEC 编号 ANR-11-LABEX-0047 和 Equipex 参考:ANR-10-EQPX-17 - Centre d'accès sécurisé aux données - CASD)。本文介绍了初步研究结果,并分发给经济学家和其他感兴趣的读者,仅用于激发讨论和征求意见。本文表达的观点为作者的观点,并不一定反映纽约联邦储备银行或联邦储备系统的立场。任何错误或遗漏均由作者负责。
