摘要。众所周知,两阶段聚合物 - 聚合物 - 水和聚合物 - 电解质 - 水系统(SPI)广泛用于生物技术和药理学生物学对象的分离和纯化,以及药物的质量控制。根据这些过程的性质,重要的是要有目的地改变SPI的分离能力。提出的研究的目的是通过使用不同的添加剂分离和净化生物学对象来确保其适应每个应用程序对象。提出的研究研究了在某些添加剂的存在下,水聚合物两相系统PEG-柠檬酸钠 - 水的相图。确定了添加剂对两相系统钉 - 柠檬酸钠 - 水的分离能力的影响。对提供的数据的分析表明,相图参数的变化以及两相系统的分离能力n*的不同值,具体取决于添加剂的性质,与这些因素的影响下的水结构变化有关。这会导致两相系统与水的相形成部分的相互作用发生变化,从而导致物理化学特性的差异,尤其是两相系统的相对疏水性。
我们将共同塑造这一变革。让世界变得更安全、更健康、更简单、更方便。我们周围的世界正在迅速变化。数百万个瞬息万变的特大城市确保了我们的生活更加美好。防火解决方案中的高性能添加剂可以保护建筑物,挽救宝贵的生命。特种化学品正在微电子领域开辟一个全新的世界。创新的激光添加剂有助于在塑料表面形成更复杂的导体条,为您的塑料提供额外的功能,并为最新一代智能手机提供更好的连接性。
对食品安全性和安全性的关注已成为全球公共卫生关注的话题。在整个永久食品供应链中,食物可能会被许多有害物质污染,对人类健康构成各种威胁。食物供应链的每个阶段都会受到农药,重金属,抗生素,食品添加剂和其他有毒化学物质的无处不闻的风险。因此,对不同食品安全问题的敏感,选择性和现实的分析方法受到了高度重视。为了确保环境安全,至关重要的是要确定生态系统中存在的任何粮食污染物,并通过检测和降解消除它们。最重要的是将这些污染物从食物和水的来源中清除,这些污染物造成了潜在的有害后果,因此试图降低它们的各种方法。[1-7]在本章中,我们讨论了纳米材料作为传感材料的最新应用,以检测食物中的危险因素,例如农药,重金属,食物添加剂和其他有毒污染物的残留物。关键词:电化学感测,食品安全,重金属离子,抗生素,食品添加剂
微塑料曾经相对不为人知,但现在已成为地方、国家和全球关注的焦点。微塑料颗粒是塑料碎片的一个子集,主要特征是尺寸小于 5 毫米至 1 微米;小于此尺寸的塑料颗粒通常称为纳米塑料颗粒。这些颗粒也可以简称为 NMP(纳米和微塑料)。微塑料颗粒可能是由最初以该尺寸制造的塑料材料排放(初级微塑料)或由较大塑料碎片降解(二次微塑料)产生的。然而,在研究人员开始解决微塑料风险问题之前,您必须了解塑料的制造方式。塑料最初是聚合物,通过施加能量(例如热量)和加入所需的添加剂,塑料材料就形成了。添加剂是故意添加到塑料中的化学物质,以提供适合目的的功能,以提供、改进、修改或保留塑料特性,例如防火和在塑料生命周期内提供灵活性、耐用性或稳定性。塑料中经常含有添加剂,因为如果没有添加剂,塑料材料的应用会受到限制、易碎、可能降解,并且保质期非常有限。正是这种颗粒特性(例如大小、形状、聚合物类型)和化学添加剂的存在,给毒理学家带来了一个相当大的问题。了解微塑料潜在风险的另一个挑战是用作添加剂的潜在化学物质的数量。现有的监管计划提供了大量信息;美国食品药品监督管理局的食品接触通知和毒理学关注阈值模型等计划,加上欧洲化学品管理局的 REACH 注册,都是有价值的暴露和毒理学信息来源。如果没有暴露和毒理学数据,科学家可以求助于框架来预测潜在的暴露和风险。为了降低问题的复杂性,科学家可能会研究人类暴露情况,以筛选出由于暴露潜力低而风险较低的化学添加剂。在本课程中,第一位演讲者将重点介绍直接暴露(例如食品包装)和现有数值生物累积食物网模型修改后的暴露的概率估计建模。第二位演讲者将讨论当传统的暴露和毒性数据尚未开发但已知化学物质的分子结构和化学吨位时,如何使用新开发的框架来估计风险。这些演讲将为与会者提供新的视角,让他们了解毒理学家在研究微塑料及其对人类健康的潜在影响时面临的关键问题。
利用所有自动Warewash设备上的无费用完整的PFS包容性服务。要参加该计划,至少需要有6种产品才能参与该计划,必须在持续购买周期中至少购买6种产品。可以通过在持续购买周期购买购买的购买来实现此申请。可以通过购买任何SSDC/First Mark品牌商品(例如RINSE添加剂,洗涤剂,消毒剂,任何SSDC/First Mark品牌品牌)来实现此申请。RINSE添加剂,洗涤剂,消毒剂,消毒剂,和扩展此程序指南中的任何其他辅助产品。消毒剂,并在本计划指南中进行缩小卸载剂或任何其他辅助产品。
作者 HS Elshafie · 被引用 168 次 — SM 具有多种生物学功能,可用作调味剂、食品添加剂、植物病害防治、增强植物防御能力……