Agriculture 4 Bundled Compost Production and Soil Application 4 Carbon Mineralization 4 Compost Addition to Rangelands 4 Feed Additives 4 Improved Irrigation Management 4 Manure Methane Digester 4 Nitrogen Management 5 Rice Emission Reductions 5 Solid Waste Separation 5 Sustainable Agriculture 5 Carbon Capture & Storage 6 Carbon Capture & Enhanced Oil Recovery 6 Carbon Capture in Concrete 6 Carbon Capture in Plastic 6 Chemical Processes 6 N2O Destruction in硝酸产生6 N2O的硝酸生产6 N2O破坏6氧化丙烷的产量7 SF6替代7 **与制冷剂相关的项目类型** 7DADACH制冷剂7 HFC制冷剂填海7 HFC替代泡沫中的HFC替代物7 HFC23销毁7 HFC23 DEPRICTION DEPRIGER EXPERTIAL ENFERTIAL ENFERINCE 8 RECERTIST ENFERANTER ENDERANTE 8 <
水凝胶由于其独特的特性和不同的应用而成为现代农业中的一种有前途的技术。由交联的亲水性聚合物形成的这些三维结构具有高吸水能力,使其在维持植物的最佳水位中很有价值(Azeem等,2023)。水凝胶可以提高用水效率,降低灌溉成本并提高植物的养分利用率,最终导致农作物产量提高(Oladosu等,2022)。此外,它们可以充当干燥土壤中水的水库,有可能减少频繁灌溉的需求(Louf等,2021)。农业中的水凝胶的使用扩展到各种应用,例如保留土壤饮水,养分,养分和养分和农药,种子涂料,种子涂料,含量控制,甚至是patra Additives(patra and Additives),以及2022222222222222222222。这些应用突出了水凝胶在应对现代农业面临的多重挑战方面的多功能性。此外,正在基于淀粉,壳聚糖和纤维素等天然材料的水凝胶以生物兼容性,无毒性和保留水分的特性探索(Uysal,2024; Li et al。,2022)。并提高了农作物的产量(Vahabi,2023年)。水凝胶的受控释放性能使它们有效地向植物输送水和养分,从而有助于可持续的灌溉实践(Prakash等,2021)。此外,已经证明了水凝胶可节省水含量,减少养分消耗,减轻农作物中的水分压力以及控制植物病原体,展示了它们具有可持续的植物保护潜力和增强的作物产量(Elshafie&Camele,2021年)。现代农业中水凝胶的利用提供了一系列好处,例如改善水管理,增强营养递送和提高农作物生产力。通过利用水凝胶的独特特性,农民可以优化资源利用,减轻环境影响并为农业实践的可持续性做出贡献。
主要产品:涂料添加剂:Texanol™、Optifilm™、酮、酯、乙二醇醚、醇溶剂、EastaPure™、纤维素、聚酯、聚烯烃基聚合物、Tetrashield™保护树脂体系|护理添加剂:烷基胺衍生物、有机酸及衍生物、纤维素生物聚合物、Adjust™ SL|特种液体:Eastman Therminol™传热流体、Skydrol™、涡轮机油、SkyKleen™、Marlotherm™|动物营养:有机酸及衍生物、氯化胆碱主要市场和应用:交通运输:OEM和修补涂料中使用的聚合物和溶剂、航空液体|耗材:图形艺术和油墨中使用的涂料添加剂和聚合物|建筑和施工:建筑涂料中使用的溶剂|食品、饲料和农业:作物保护、肠道健康解决方案|工业化学品:用于化学过程和可再生能源的传热流体 水处理和能源:用于水处理的烷基胺衍生物 耐用品和电子产品:用于涂料、木材和工业应用的聚合物和溶剂 | 医疗和制药:用于药物的胺基中间体 | 个人护理和健康:用于个人和家庭护理产品的肥皂、化妆品和洗涤剂的胺基中间体 主要原材料:醇、烷基胺、苯、CS2 苛性钠、环氧乙烷、甲酸、液化天然气、新多元醇酯、磷、丙烷、丙烯、木浆 主要竞争对手:涂料添加剂:巴斯夫欧洲公司、陶氏公司、Oxea、塞拉尼斯公司 | 护理添加剂:巴斯夫欧洲公司、陶氏公司、亨斯迈公司、科迪华公司、Agro-Kanesho Co. Ltd.、拜耳 | 特种液体:陶氏公司、埃克森美孚公司动物营养:巴斯夫公司、柏斯托控股公司、鲁西化工集团、巴尔赫姆公司、安迪苏
进行了一系列实验室实验,以确定常用湿式添加剂是否会对Ucarcide®50抗菌剂的性能产生不利影响。表1显示了明矾,碳酸钙,高岭土,松香,淀粉,亚硫酸盐和二氧化钛对杀菌疗效25分(PPM)活性Slimicide的杀菌效率。所有添加剂均以0.5%的浓度测试,碳酸钙(0.1%)和亚硫酸盐(0.005%)。使用纯铜绿假单胞菌菌株在pH 7下进行实验。结果比较了在添加剂存在下与单独含有纤维化剂的样品中活性纤维化的疗效。一小时后,所有样品的微生物水平降低了99%。三个小时后,还原基本上是完整的,这表明在存在这些化学物质的情况下,Ucarcide®50抗菌剂的有效性。
在膨胀粘土行业,高达 90% 的产品可以重复使用。它还节省资源,因为 1m³ 天然粘土将产生大约 4m³ 的膨胀粘土。高达 100% 的膨胀粘土添加剂和 10-15% 的原始粘土可以被来自其他行业部门的替代材料所取代。膨胀粘土制造商使用废物作为添加剂或燃料,从而减少了对原始原料的需求。例如,一家比利时制造商使用来自钢铁行业的氧化铁作为添加剂。这种氧化铁是膨胀过程中所必需的,因为膨胀粘土不具备可实现膨胀的化学性质,同时也有助于降低整个过程中的能耗。此类添加剂来自炼油厂、植物油生产商、生物柴油、钢铁生产或处理、工业和市政废水清洁、矿棉和其他类型的废物。
目录 页码 执行摘要 4 关于作者 5 简介 5 • 本评论的重点 • 固态 / 半固态锂离子电池组件 • 当今的固态 / 半固态锂离子电池市场 • (预计)市场发布 – 固态 / 半固态锂离子电池电动汽车 基于人工智能的商业相关专利识别 12 • 自 2019 年以来的商业相关专利系列 / 实用新型数量 技术决策树 30 • 固体电解质 – 类型 – 已推出或即将推出市场 • 固体电解质 – 类型 – 根据专利申请 • 固体电解质 – 概念 • 固体电解质 – 不含磷的氧化物 – (可能)结晶 • 固体电解质 – 磷酸盐 / 含 P 的氧化物 – (可能)结晶 • 固体电解质 – 氧化物 / 磷酸盐 – (可能)玻璃 • 固体电解质 – 氢氧化物 • 固体电解质 –硫化物•固体电解质 – 减缓硫化氢排放•固体电解质 – 聚合物•固体电解质 – 卤化物 / 氧卤化物•薄膜电池用固体电解质•固体电解质 – 硼烷•锂(钠)盐•增塑剂•液体电解质组分 / 液体添加剂•固体电解质添加剂 / 不含锂的支撑和填充材料•固体电解质粘合剂•负极活性材料•正极活性材料•负极添加剂•正极添加剂•负极粘合剂•正极粘合剂
摘要:纳米材料作为润滑油添加剂引起了极大的关注,因为它们具有可设计的组成和结构,合适的机械性能和可调的表面功能。但是,纳米材料和碱基油之间的兼容性不佳限制了其进一步的应用。在这项工作中,我们证明了油溶性聚(LAURYL甲基丙烯酸酯)(PLMA)刷刷的金属有机框架纳米颗粒(Nanomofs)是润滑油添加剂,可实现有效的摩擦减少和抗磨损性能。大型原始子,该聚合将其配位移植到UIO-67纳米颗粒的表面上。然后,通过表面启动的原子传递自由基聚合化在大型引起剂修饰的UIO-67上生长PLMA刷,从而极大地改善了UIO-67纳米颗粒的亲脂性特性,并显着增强了非极性溶剂溶液和碱基机油中胶体稳定性和长期分散性。通过将UIO-67@PLMA纳米颗粒添加到500 sn的基础油中,摩擦系数和磨损量减少了45.3%和75.5%,因为它们的出色机械性能和油的散发性。此外,UIO-67@PLMA添加剂的载荷能力从100 n大大增加到500 N,即使在65 Hz的高摩擦频率和120°C的高温下也证明了它们的出色摩擦学性能。我们的工作强调了油溶性聚合物刷官能化纳米型,以高效润滑添加剂。关键字:MOFS;聚合物刷;表面修饰;摩擦学特性;减少摩擦;反衣
编辑:尽管水对于人类生存至关重要,其分布不平衡以及暴露于无数污染来源,但Daniel CW Tsang仍然使水短缺变得越来越紧迫。膜技术提供了一种有效的解决方案,可减轻缺水的影响。通过合并具有不同性质和尺寸尺寸的添加剂,可以提高膜的选择性和渗透率。然而,由于关于水处理应用中纳米级材料的环境和经济可行性的巨大辩论,我们可以推断出,第一个工业纳米复合膜的商业化需要很长的路要走。这个绊脚石促使科学社区搜索具有可持续特征的替代修改路线和/或材料。在本文中,我们提出了一项特学评论,通过应用自然添加剂(例如,粘土,阿拉伯胶,沸石,木质素,水可通道蛋白),将可持续性,纳米技术和膜技术融合在一起,将其添加剂(例如,Bio Char,eReTER)和recel and receyl(例如,E.G),E.苯二甲酸酯,再生聚苯乙烯)用于聚合膜的合成和修饰。在存在的可持续天然和废物基材料的存在引起的聚合物膜上赋予了特征。此外,还阐述了与这些纳米和微型添加剂在复合膜修改中应用的障碍相关的障碍的策略。