三年全额资助的博士职位(研究生院 - 化学,生物学和健康)地点:格勒诺布尔神经科学研究所,“神经循环骨骼动力学和结构”团队,CheminFortunéFerrini,38700 La Tronche,法国,法国。标题:探索Tau在细胞粘附动力学中的作用:Tau,细胞骨架和局灶性粘附摘要之间的相互作用:与神经变性相关的蛋白质Tau最近成为癌症的预后因素。然而,连接tau和细胞转化的分子机制仍然很少了解。作为tau是微管和肌动蛋白细胞骨架的关键参与者,其错误调节可能会改变几个事件,包括细胞粘附,迁移和转移。的确,最近的研究强调了局灶性粘附途径与tau功能障碍之间的联系。该项目旨在探讨Tau的表达和/或修饰如何通过微管和/或肌动蛋白网络的破坏,涉及肿瘤进展的过程来影响局灶性粘连。By combining in cellulo and in vitro studies, the PhD candidate will pursue two main objectives: 1/ to correlate, in cell models, tau- mediated cytoskeleton organisation with focal adhesion assembly and distribution 2/ to reconstitute cytoskeleton properties with purified proteins and investigate how tau proteins affect the microtubule/actin interplay known to occur at the leading edge of migrating cells.总体而言,结果应强调tau蛋白在肿瘤发生错误调节的机制中的作用,并有助于了解神经退行性疾病与癌症之间的联系。
随着温度的变化,带状疱疹中的沥青移动 - 在热量中膨胀,寒冷的收缩 - 不断抓地力并重新剪断颗粒。Malarkey的橡胶沥青配方增强了沥青的柔软性和粘性性,以实现更深的颗粒嵌入和粘附,并具有橡胶状的伸长和恢复,从而更有效地握住和重磨颗粒更长,有助于减少颗粒损失。Malarkey带状疱疹的颗粒粘附比行业标准规范高65%(ASTM D3462)。
揭示了G和C-S-H之间仅有范德华力,界面键合强度很弱,并且脱键性能很低。石墨烯的脱根能量随着界面水含量的增加而降低,表明水侵入会削弱G和C-S-H的结合效应,并减少石墨烯对C-S-H底物的难度。在纳米级湿度的影响下探索石墨烯对CSH的粘附行为对于理解基本的粘附机制,优化复合材料证明和促进相关学科的发展至关重要。
缩写:EBIS,红细胞岛; EMP,红细胞巨噬细胞蛋白; EPO,红细胞生成素; EPOR,促红细胞生成素受体; FPN1,铁蛋白1; HMOX-1,血红素加氧酶-1; HRG-1,血红素响应基因1; ICAM-4,细胞间粘附分子4; ICAM-4S,细胞间粘附分子4分泌; IGF1,胰岛素样生长因子; ITIM,免疫受体酪氨酸抑制基序; KLF1,类似Kruppel的因子1; MFG-E8,牛奶 - 脂肪 - 球蛋白E8; PBMC,外周血单核细胞; PS,磷脂酰丝氨酸; PSC,多能干细胞; RBC,红细胞; RPM,红色果肉巨噬细胞; SCD,镰状细胞疾病; SHP,SRC同源区2含域的磷酸酶; TRF,转铁蛋白; VCAM-1,血管细胞粘附蛋白1 *通讯作者在:坎皮纳斯大学,Unicamp,Campinas 13083-970,SP,巴西。电子邮件地址:renata.sesti@gmail.com(R。Sesti-Costa)。 https://doi.org/10.1016/j.htct.2022.07.002 2531-1379/2022Associaçãobrasileirade hemotologia,Shemoterapia e terapia e terapia celular。 由ElsevierEspaña,S.L.U。出版 这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。电子邮件地址:renata.sesti@gmail.com(R。Sesti-Costa)。https://doi.org/10.1016/j.htct.2022.07.002 2531-1379/2022Associaçãobrasileirade hemotologia,Shemoterapia e terapia e terapia celular。由ElsevierEspaña,S.L.U。出版这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
将石墨烯集成到电子、光子或传感设备中的限制因素之一是无法在隔离器上直接生长大规模石墨烯。因此,需要将石墨烯从供体生长晶片转移到隔离目标晶片上。在本研究中,通过电化学分层程序将石墨烯从化学气相沉积的 200 毫米锗/硅 (Ge/Si) 晶片转移到隔离 (SiO 2 /Si 和 Si 3 N 4 /Si) 晶片上,使用聚甲基丙烯酸甲酯作为中间支撑层。为了影响石墨烯的粘附性能,本研究调查了目标基板的润湿性。为了增加石墨烯在隔离表面上的粘附性,在石墨烯转移过程之前用氧等离子体对它们进行预处理。润湿接触角测量表明,表面与氧等离子体相互作用后亲水性增加,从而提高了石墨烯在 200 毫米目标晶圆上的附着力,并可能在标准 Si 技术中对基于石墨烯的器件进行概念验证开发。
权利声明:这是作者在《国际黏附和粘合剂杂志》上接受发表的作品版本。出版过程导致的变更(例如同行评审、编辑、更正、结构格式和其他质量控制机制)可能不会反映在本文档中。自提交出版以来,可能已对本作品进行了更改。最终版本随后发表在《国际黏附和粘合剂杂志》上,[105, , (2020-12-04)] DOI: 10.1016/ j.ijadhadh.2020.102784 。© 2020。此手稿版本根据 CC-BY-NC-ND 4.0 许可证提供 http:// creativecommons.org/licenses/by-nc-nd/4.0/
DOWSIL™ ME-1190 粘合剂 透明 可喷射分配;高模量 3,500 370 D 59 7.4 130°C/1 小时 喷射 DOWSIL™ ME-1180 粘合剂 透明 可喷射分配;良好的应力消除效果 5,600 23.4 A 81 5.5 130°C/1 小时 分配;喷射 DOWSIL™ ME-1070 粘合剂 黑色 高触变性;高粘合强度 37,000 12.2 A 74 11.0 150°C/0.5 小时 印刷;分配 DOWSIL™ 7920-LV 芯片粘接粘合剂 可喷射分配;高粘合强度 22,000 7.2 A 68 9.0 150°C/1 小时 分配;喷射
