设备的位置是提供物理智能的核心。手机的显示内容可以根据位置量身定制,机器人的操作受其位置的约束,或者建筑物可以重新配置其HVAC系统以更好地为用户服务。更广泛地说,通过体育智能,我们可以适应设备的广义智能并提供情境意识。一般智能主要由LLM和基础ML模型提供,需要数据和新型网络体系结构来捕获相似之处。同样,我设想将我们的设备和系统带有物理智能将要求我们更整体地“看到”环境,开发和部署系统以捕获这些数据,最重要的是,以安全和隐私的方式进行。我更广泛的研究愿景是为机器人,移动设备和智能建筑系统提供这种物理智能。但是,我发现我们当前的传感系统在提供这种体力智能方面的位置很差。GPS主要有助于确定许多室外位置的位置。但是,在许多室内情况下,在许多情况下收集了这种情况,而GPS峡谷变得困难。人类通常通过从我们的环境中收集视觉线索来辨别这种情况。沿着类似的线条,视觉传感器(例如相机或激光镜头)主要用于了解设备在环境方面的位置。但是,这些视觉传感方式在用于定位和映射时具有许多差距。在遮挡的设置,动态照明方案或单调和无特征环境下的故障只是少数。因此,我的研究主要是由我们需要更好,更强大的方法来感知我们周围环境的愿景的指导。我在开发无线传感系统方面的研究,利用WiFi,UWB和其他RF信号是实现这一愿景的一步。我的工作有1。利用环境WiFi信号来提高机器人在挑战性的室内环境中本地化和映射自身的能力(P2Slam [ICRA+RAL '22],VIWID [在提交下]):我开发了猛烈的型算法,这些算法独立于可视化和导航的效率,从而使稳固的效率独立于该系统,从而提高了该系统的效率,并效果效果。2。构建的可部署和CM精确的超宽带定位系统,以服务于下一代扩展现实应用程序(XRLOC [Sensys '23],Uloc [Imwut'21']):我开发了用于提供精细元素定位的系统,以提供良好的定位和跟踪UWB标签,以进行安全监控,AR/VR世界/VR World构建或物流管理或物流管理。3。构建了最新的室内本地化系统(DLOC [Mobicom '20]),并在大环境中自动化了这些系统(Locap [NSDI '20])的部署:我已经开发了端到端管道,以简化室内定位的部署,以提供室内尺度的部署,以为移动和IOT设备提供子计尺度的精度。这些核心贡献为设备和机器人通过其RF收音机“看到”的道路铺平了道路,以增强其在挑战性场景中的空间理解。他们还将我定位为利用其他频谱,包括MM波,超声波和Sub-GHz,以对我们的空间有更全面的了解。通过这些多方面的传感方案提供物理智能,将使自主系统更安全地部署,改善AR/VR用户体验,并增强我们的设备操作的环境。
我们报告了Millikelvin绝热去磁性消防制冷(MK-ADR)候选材料Naybgeo 4的合成,表征,低温磁和热力学测量值,该候选物质Naybgeo 4表现出扭曲的YBO 6磁性单元的平方晶格。磁化强度和特定热量表明弱相互作用的有效自旋1 /2低于10 K的有效自旋1 /2矩,质量 - 韦斯温度仅为15 mk,可以通过1 t级的磁场进行偏振。对于ADR性能测试,我们启动了从5 t的温度下的5 t启动〜2 k的温度,并达到〜2 k的温度,并达到150毫克的最低温度。变暖曲线表明在210 MK处的热容量中的磁性急剧过渡,这仅表示磁性弱弱。与在相似条件下研究的沮丧的ytterbium-Ox-odr ADR材料相比,S GS≃101MJ K-1 cm-3的熵密度并保持低于2 k的2 k的时间是竞争性的,而最小温度则更高。
1罗马萨皮恩扎大学实验医学系,意大利罗马00185; ialilia.barchetta@uniroma1.it(i.b.); aviaagata.cimini@uniroma1.it(F.A.C。)2罗马萨皮恩扎大学公共卫生和传染病系,意大利罗马00185; federica.sentinelli@uniroma1.it 3罗马萨皮恩扎大学医学外科科学和生物技术系,意大利拉丁裔04100; caterina.chiappetta@uniroma1.it(C.C.); claudio.dicristofano@uniroma1.it(C.D.C.); frida.leonetti@uniroma1.it(F.L.)4医学与心理学学院医学和外科科学系,医学与心理学学院,罗马萨皮恩扎大学圣安德烈医院,意大利00189,意大利00189; gianfranco.silecchia@uniroma1.it 5内分泌学和糖尿病,临床医学系,公共卫生,生活与环境科学(MESVA),L'Aquila大学,意大利67100 L'Aquila,意大利; marcogiorgio.baroni@univaq.it 6神经内分泌学和代谢疾病,IRCCS Neuromed,86077意大利POZZILLI *通信:gisella.cavallo@uniroma@uniroma@uniroma1.it4医学与心理学学院医学和外科科学系,医学与心理学学院,罗马萨皮恩扎大学圣安德烈医院,意大利00189,意大利00189; gianfranco.silecchia@uniroma1.it 5内分泌学和糖尿病,临床医学系,公共卫生,生活与环境科学(MESVA),L'Aquila大学,意大利67100 L'Aquila,意大利; marcogiorgio.baroni@univaq.it 6神经内分泌学和代谢疾病,IRCCS Neuromed,86077意大利POZZILLI *通信:gisella.cavallo@uniroma@uniroma@uniroma1.it
现代的智能系统正在变得越来越单体,由巨大的基础模型提供支持,该模型受到数万亿个网络数据的训练。为了使AI系统民主化,必须确保它们不仅限于在多加速器群集上运行,而且还可以无缝地使用手机等商品设备。此外,基础模型在训练数据中经常遇到的头部任务与不常见的尾巴任务之间表现出性能差异,因此必须通过有效检索相关的上下文数据来适应其适应。此外,与人类学习原则相呼应,并非所有任务都具有挑战性或需要全部庞大的网络数据。我的研究方法中心将这些概念转化为现实世界实施的实用解决方案,以确保可以可靠,负责任地缩放这些智能系统,以公平地为所有用户服务。
使用低功耗电子设备设计低功耗嵌入式系统指南 YASHU SWAMI 印度苏兰帕莱姆阿迪亚工程学院 (A) 电子与计算机工程系 摘要:低功耗嵌入式系统 (LPES) 和物联网产品的设计可能包括多种电源管理技术,也可能包含有助于降低功耗的复杂片上功能。嵌入式系统的电源管理和低功耗也是通过复杂的算法实现的,每个低功耗系统 (LPS) 都可能需要多种方法来避免使用额外的电池电量。在创建必须极其节能且同时提供必要计算能力的 LPES 时,我们可以使用多种策略。这完全取决于必须满足的设计规范。然后,如果可行的话,从低功耗电子设备 (LPE) 中选择合适的低功耗组件。在研究和审查了多个 LPES 实时项目后,我们列出了一些可用于实现嵌入式系统低功耗设计和功耗的策略。在分析了大量 LPES 实时项目之后,我们列出了使用 LPE 进行嵌入式系统低功耗设计的几种方法。LPES 设计还有其他好处。LPES 产生的热量更少,对环境更有利。对于 1000 个 LPES 设备,每个设备节省一瓦功率等于一千瓦时,即我们可以节省 1 单位电力。低功耗设计可提高组件和系统的可靠性。嵌入式系统的使用寿命得到延长。在许多情况下,LPES 设计可能会降低生产成本。所选的 LPE 组件更实惠、更便宜。因此,低瓦数电源、LPES 设计更简单、更便宜。关键词:- 低功耗嵌入式系统、低功耗设计、低功耗 PCB、低功耗电子元件、电源管理、电池管理、算法优化。
OBM原始品牌制造商ODM原始设计制造商OEM OEM原始设备制造商SSCM可持续供应链管理TBL三重底线DJSI DOW JONE可持续性interies fem fem fem fem fem gri设施环境模块全球报告计划EKPI环境绩效指标MSI物质可持续性指标MSI物质可持续性指标ZDHC ZDHC ZDHC ZDHC ZERINIST HAIMARITION CHARINASINE挥发性有机化合物MSI材料可持续性指数SCSI供应链可持续性指数
前列腺癌(PCA)是男性泌尿生殖系统最常见的肿瘤。最终将发展为致命的转移性cast割前列腺癌,治疗方案受到限制。脂肪组织分布在人体的各个部位。它们具有不同的形态结构和功能特征,并且与各种肿瘤的发展有关。腹膜脂肪组织(PPAT)是最接近前列腺的白色内脏脂肪组织,是PCA肿瘤微环境的一部分。研究表明,PPAT通过多个活性分子的分泌参与PCA发育,进展,侵袭和转移。肥胖,饮食,运动和有机氯农药等因素可以间接或直接通过PPAT影响PCA的发展。基于PPAT参与调节PCA的机制,本综述总结了PCA的各种诊断和治疗方法,并具有潜在的应用,以评估患者疾病的进展并改善临床结果。
在所有面板中,路径1显示了基线认知与随访认知之间的关联;路径2显示了基线肥胖和随访认知之间的关联;路径3显示了基线认知和随访肥胖之间的关联。路径4显示了基线肥胖和随访肥胖之间的关联。路径5显示了基线肥胖与基线认知之间的协方差;路径6显示了随访肥胖和随访认知之间的协方差。
摘要:心血管疾病(CVD)和2型糖尿病(T2DM)是代表全球主要死亡原因的四种主要慢性非传染性疾病(NCD)中的两种。几项研究表明,内皮功能障碍(ED)在这些慢性疾病的发病机理中起着核心作用。尽管众所周知,全身性慢性炎症和氧化应激主要参与ED的发展,但最近的研究表明,血管性脂肪组织(PVAT)与其发病机理有关,也有助于动脉粥样硬化和胰岛素抵抗(IR)的进展。在这篇综述中,我们描述了PVAT和ED之间的关系,我们还分析了PVAT在CVD和T2DM发病机理中的作用,进一步评估了其潜在的治疗靶点,目的是恢复正常的ED并降低全球心血管风险。
传统 CMOS 逻辑的能效正在快速接近实际极限,而这最终源于基本的物理考虑。根据 IRDS 路线图,到 2030 年左右,最小典型逻辑信号能量预计将降至最低,约为 0.2 fJ (1.25 keV)。这将加剧可实现的设备密度(随着行业转向 3D VLSI 技术,该技术可以在一个制造过程中集成多个“层”有源设备,设备密度将继续增加)与芯片封装内功率耗散密度保持可控的需求之间的矛盾。实际上,这些限制将导致实际芯片设计中潜在可用的设备数量资源越来越未得到充分利用,加剧了目前已经存在的“暗硅”问题。