摘要:肥胖症,一种以脂肪组织过度积累为标志的慢性疾病,不仅会影响个体的幸福感,而且会显着膨胀医疗保健成本。脂肪的生理过量表现为脂肪组织中的甘油三酸酯(TG)沉积,白色脂肪组织(WAT)通过脂肪细胞增生是一种关键的脂肪生成机制。随着解决这一全球健康危机的努力,了解促成因素的复杂相互作用对于有效的公共卫生干预和改善患者预后至关重要。在这种情况下,肠道菌群衍生的代谢产物在编排肥胖调节中起着重要作用。微生物脂多糖(LPS),继发性胆汁酸(BA),短链脂肪酸(SCFAS)和三甲胺(TMA)是发作性疾病状态下的主要肠内代谢物。新兴证据强调了微生物群在影响宿主代谢和随后的健康结果中的重要作用,为治疗策略提供了新的途径,包括基于多酚的微生物种群的操纵。在各种药物中,咖啡因作为代谢途径的有效调节剂出现,表现出抗炎,抗氧化剂和肥胖性降低特性。值得注意的是,咖啡因的抗辅助潜力归因于关键脂肪形成调节剂的下调。最近的发现进一步表明,咖啡因对肥胖的影响可能是通过肠道菌群的改变及其代谢副产品来介导的。因此,本评论总结了咖啡因在通过肠道菌群及其代谢物调节肥胖症中的抗辅助作用。
引言瘦素是一种蛋白质结构的激素,由脂肪组织释放的167种氨基酸组成。它是由人类中的ob/ob基因编码的(1)。这种激素对能量平衡和食物摄入具有重要影响(2)。已经表明,主要由体内脂肪组织合成的瘦素在某种程度上由胎盘,胃上皮,骨骼肌,垂体和乳腺分泌(3)。瘦素主要由脂肪组织合成和分泌,通过调节其在下丘脑中的特定受体来调节能量摄入和能量消耗之间的平衡,从而充当了一种抗生素因子。已经证明瘦素具有许多功能,例如繁殖,造血,胃肠道功能的调节,血管生成,交感神经系统激活的调节,确定骨密度,热生成和脑发育(3)。瘦素瘦素的结构具有四倍的螺旋结构,在结构上类似于1型螺旋家族的成员(4)。所有受体类型的瘦素类型均由LEPR基因编码,但它们以6种形式存在,即OBRA,OBRB,OBRC,OBRD,OBRD,OBRE和OBRF,具体取决于不同长度的细胞质结构域,这是不同长度的替代mRNA所用的替代mRNA所用中的替代mRNA所产生的。这些受体是1类细胞因子受体家族的成员(5)。瘦素受体在大脑和外周组织中表达。瘦素与其受体的结合导致刺激与Janus激酶2途径相关的受体,从而导致两个酪氨酸残基的磷酸化。(6)。在哺乳动物的所有组织中都可以看到瘦素受体(例如OBRA和OBRB)的表达,但OBRB仅在下丘脑中高度表达(4)。瘦素的三级结构。
基质血管分数(SVF)使用常规吸脂技术收集是一种创伤技术,可增加再生成分的细胞凋亡,需要使用酶和细胞培养。该研究描述和评估,使用创新的单步刺激技术获得的总基质血管分数(SVF)细胞的数量和生存能力的有效性,一种STEP™技术,分类为微小级别的脂肪脂肪脂肪脂肪脂肪脂肪脂肪含量收集。手术室中的便携式电池计数器设备(Luna STEM™)用于通过荧光分析样品。总细胞,成核,无核和生存力。对八名接受脂肪灌木的健康患者进行了研究,从2020年1月至2021年12月之间,每位患者(n = 16)收集了两个样品(n = 16)。选择了periumbilical区域。作为供体面积和腹部壁分配为perium骨面积,并将腹部壁分为右侧和左侧。红外光发射后,在封闭的系统(注射器)中收集了每侧40 cc的脂肪组织。简单的离心,在吸入脂肪组织后没有操纵或使用的酶,才能获得10 CC的基质血管分数。一步™技术允许收集脂肪组织,该脂肪组织保留了含有所有再生基质元素作为细胞外基质而无需处理或操纵的细胞外基质;使用简单的离心方案和非酶消化过程需要20分钟,以保留样品的基质元素。根据表格和直方图,获得的细胞总数为1.06×10 7 /ml和2.11×10 7 /ml,具有92.5%的生存能力和0-5个死亡细胞。具有选择性光刺激特性的一个步骤™技术,可以从结构结缔组织(胶原蛋白纤维)中释放脂肪细胞和基质血管分数。获得大量的基质血管分数细胞,具有高活性,可用于潜在的再生治疗。这种创新技术(光刺激)可以改变概念并改善基质血管分数收获,遵循“最小级别的操纵”过程的参数。
慢性过氧化物组增殖物激活的受体α/γ和大麻素受体2激动剂治疗减弱了内脏脂肪组织(VAT)衍生的细胞外囊泡相关的增值税和非酒精性steatoholic steatoholic steatoholic steatoholic steatohololic sterepatial steathepation Pio hepatial poceathepation pipation steatohocial pipation steatohocial pipation。AM J Pathol。2024年10月26日:S0002-9440(24)00398-5。
项目概述背景:胰岛素治疗是晚期2型糖尿病(T2DM)治疗的主要治疗方法,最近已证明由于患有心血管细胞和周围的血管性脂肪蛋白脂肪脂质脂肪脂肪脂肪症的胰岛素抵抗(IR),由于存在胰岛素耐药性(IR),在晚期动脉粥样硬化的患者中产生有害的心血管效应。在人血管壁和PVAT中激活失调的胰岛素信号传导,导致血管氧化应激增加,并激活促进性动脉粥样硬化过程。因此,在CVD的背景下,有未满足的需要更好地理解器官特异性,分子IR的发病机理,并开发新的胰岛素敏化策略,以利用胰岛素的全部治疗潜力。假设:我们假设:1)心血管硬化患者的心血管细胞的特征是分子IR,独立于全身性IR状态; 2)脂肪IR可能会受到肥胖,糖尿病和对数级炎症等全身参数的影响; 3)心血管胰岛素敏化可能会扭转胰岛素的直接有害作用,从而诱导心脏保护表型。目的:1)在人动脉粥样硬化的背景下,在心血管细胞[内皮细胞(ECS),血管平滑肌细胞(VSMC)和PVAT脂肪细胞]中表征胰岛素信号传导; 2)研究低度系统性和局部炎症,肥胖和糖尿病对心血管硬化患者心血管脂肪胰岛素信号传导的影响; 3)提出了人血管和PVAT中分子胰岛素信号传导的新调节剂,这些调节剂可以充当器官特异性心血管胰岛素敏化的靶标。实验性工作计划:该工作计划将建立在牛津群体,血管和脂肪(OXHVF)的牛津群体上,这是心脏手术患者最精致的同类群体之一:大型血管生物库(乳腺静脉 - 素食性动脉内部,素食静脉 - 静脉 - 静脉 - 静脉 - 静脉 - 脂肪),心肌和脂肪组织(At),含有时代(AT)(及其含量不同)周围,血管周围,皮下和臀肌)以及循环的生物标志物测量,整个基因组数据以及参与者的RNA测序组织数据(n> 1600)以及心脏CT图像。正在进行的组织收集(〜3-5例患者 /周),样品用于体内组织培养和心血管细胞分离,用于人类细胞培养实验。AIM 1:我们将询问ECS中胰岛素信号传导的细节,从晚期冠状动脉粥样硬化患者中分离出的VSMC(包括糖尿病患者和非糖尿病患者),以及用既定的动脉粥样硬化模拟方案培养的原代细胞。我们的特征将使用
抽象自体脂肪光栅是一种纠正软组织缺乏的广泛认可的方法。尽管脂肪移植表现出极好的生物相容性和简单的适用性,但脂肪坏死引起的相对较低的保留率仍然是一个挑战。脉管移植后脉管系统是不可或缺的,具有多种关键功能。移植物中的快速有效的血管生成对于供应脂肪细胞的生存所需的氧气至关重要。它促进了炎性细胞的流入,以去除坏死的脂肪细胞和有助于再生细胞的脂肪组织再生脂肪移植物中的再生。脉管系统还为脂肪祖细胞和血管祖细胞之间相互作用提供了一个利基市场,从而增强了移植物中的血管生成和脂肪形成。已经采用了各种方法,例如使用多种促血管生成细胞或利用无细胞的方法来富集移植物来增强血管生成。米色和移植物中的脂肪细胞可能会增加血管密度。本综述旨在概述血管在脂肪移植中的功能,并讨论可以在脂肪接枝后增强血管生成的不同细胞或无细胞的方法。
摘要:脂肪组织是能量平衡的中心参与者,表现出明显的代谢柔韧性,通常在肥胖症和2型糖尿病(T2D)中受到损害。脂肪细胞内的线粒体功能障碍会导致脂质处理效率低下和氧化应激增加,从而共同促进了肥胖及其并发症中心的全身代谢破坏。本评论探讨了线粒体在肥胖和T2D的背景下,线粒体在改变主要脂肪细胞类型(白色,棕色和米色)的代谢功能中所起的关键作用。具体而言,在白色脂肪细胞中,这些功能障碍会导致脂质加工受损和增加的氧化应激负担,从而加剧了代谢性障碍。相反,线粒体功能不受损害,没有其热能能力,从而降低了棕色脂肪细胞中最佳能量消耗的能力。米色脂肪细胞独特地结合了白色和棕色脂肪细胞的功能特性,在适当的刺激下具有帽质脂肪细胞的形态学相似性,同时拥有帽质脂肪细胞,以转化为富含线粒体,能量燃烧的细胞。每种类型的脂肪细胞都会显示出独特的代谢特征,该特征受每种细胞类型的线粒体动力学的控制。这些独特的线粒体代谢表型受包括转录因子,共激活因子和酶的专业网络的调节,这些网络共同确保了细胞能量过程的精确控制。有力的证据表明,在因果关系与肥胖引起的T2D的因果关系中,脂肪细胞线路的代谢和上游调节剂有缺陷。旨在改善脂肪细胞线粒体功能的有针对性干预措施为增强全身性大量营养素氧化提供了有前途的治疗途径,从而可能减轻肥胖症。理解脂肪细胞中线粒体功能的进步强调了打击肥胖和相关合并症的方法的关键转变。重新点燃脂肪组织中卡路里的燃烧,以及其他重要的代谢器官,例如肌肉和肝脏,鉴于脂肪组织在能量储存和释放中的广泛作用至关重要。
Mikael Rydén 是临床和实验脂肪组织研究教授,并担任卡罗琳斯卡医学院糖尿病临床代谢研究中心和内分泌科主任。他还是瑞典斯德哥尔摩卡罗琳斯卡大学医院内分泌学/糖尿病学高级顾问。他的研究重点是人类脂肪组织在几种不同情况下的作用,涵盖从不同细胞培养模型中的先进细胞和分子生物学技术到人体临床研究。他曾担任 2018 年至 2022 年欧洲糖尿病协会名誉秘书,也是卡罗琳斯卡医学院诺贝尔大会当选成员。近期出版物选 Maqdasy S、Lecoutre S、Renzi G、Frendo-Cumbo S、Rizo-Roca D、Moritz T、Juvany M、Hodek O、Gao H、Couchet M、Witting M、Kerr A、Bergo MO、Choudhury RP、Aouadi M、Zierath JR、Krook A、Mejhert N、Rydén M。磷酸肌酸代谢受损白色脂肪细胞会促进炎症。纳特·梅塔布。 2022 年 2 月;4(2):190-202。 DOI:10.1038/s42255-022-00525-9。 Epub 2022 年 2 月 14 日。PMID:35165448; PMCID:PMC8885409。
摘要:肥胖和2型糖尿病(T2DM)是与严重发病率和死亡率增加有关的主要公共卫生问题。肥胖和T2DM都与脂肪症密切相关,该术语描述了脂肪组织的病理生理变化。在这篇综述中,我们强调了脂肪组织功能障碍是这些疾病病因的主要因素,因为它促进了慢性炎症,葡萄糖稳态失调以及脂肪生成受损,导致了异型脂肪和胰岛素抵抗的积累。这种功能失调的状态可以通过至少15%的体重的损失有效地改善,这与更好的血糖控制,心脏代谢疾病的可能性降低以及总体生活质量的改善相关。可以通过生活方式改良(健康饮食,常规体育锻炼)和药物治疗来实现体重减轻。在这篇综述中,我们总结了解决体重减轻的不同有效的管理策略,例如减肥手术和几类药物,即二甲双胍,GLP-1受体激动剂,木蛋白类似物和SGLT2抑制剂。这些药物通过针对肥胖和T2DM病理生理的各种机制来起作用,并且已证明它们可诱导体重显着减轻并改善T2DM肥胖个体的血糖控制。
Área Temática: Biociencias y biotecnología Nombre: PEYROU , MARION Referencia: RYC2022-037961-I Correo Electrónico: peyrou.marion@gmail.com Título: From brown adipose tissue to hepatic function Resumen de la Memoria: I obtained my Ph.D. 2013年在日内瓦大学生物学博士学位,该大学的非酒精性脂肪肝疾病(NAFLD)的世界专家Foti教授。我研究了肿瘤抑制剂PTEN在人类肝炎病毒改变的分子机制中的作用,并导致肝代谢缺陷,例如脂肪变性和肝细胞癌(HCC)。这项研究导致了两家出版物作为肝病学和肝病学杂志的第一作者,并通过两个奖品的归因而进一步认可。在我在FOTI实验室中担任博士后研究员的去年,我调查了肝抑制PTEN对外围器官葡萄糖和脂质代谢的影响。i表明,肝细胞中的PTEN缺乏症会触发肝脏至外交器官串扰,从而降低肥胖性和提高肌肉胰岛素敏感性。作为第一作者的研究结果已于2015年发表在《肝病学杂志》上。然后,我选择将下一个研究集中在与肥胖和II型糖尿病相关的代谢疾病上。2014年,我在巴塞罗那大学的脂肪生物学领域的世界领导者Villarroya教授的实验室开始了博士后住宿,调查了与棕色脂肪组织与外围器官传播有关的分子机制,其中包括叶子。因此,我的工作在脂肪细胞生物学和肝物理病理学之间一直保持联系。我们的发现确定了Kininogen系统是BAT热调节的相关组成部分,该组件为BAT提供自动调节性抑制性信号传导。作为第一作者的这项研究已于2020年发表在《自然通信》上。我们还表明,血管周围脂肪组织库中米色表型的获取与可能针对血管系统的双向基因的上调有关。我在2021年在生理学边界发表了这项研究。此外,我为Villarroya实验室的不同项目做出了贡献,涉及发现由BAT分泌的新的Batokines并影响外围细胞。这些合作产生了7个出版物(包括NAT通讯和一个单元格代表)和4个评论。值得一提的是,我在2016年和2020/2021年有2个产妇叶子,每个产妇有6个月。总而言之,我的专业知识领域涉及肝脏病理学以及棕色脂肪组织生物学,从而结合了两个不同的专业领域。在我职业生涯的这个阶段,我认为自己准备在研究发展方面发挥领导作用,我感到完全准备成功进行。
