临床标准在审查根据成员的医疗福利计划进行覆盖范围的临床标准,或者其他临床审查(包括事先授权),以下标准将用于确定该药物是否满足任何适用于预期/规定目的的适用医疗需求。adstiladrin(Nadofaragene Firadenovec-vncg)请求Adstiladrin(Nadofaragene Firadenovec-vncg)请求,如果满足以下标准:I。个人年龄在18岁以上(标签);和II。个体用作静脉输注;和iii。个体患有诊断为Calmette-guerin(BCG) - 无反应或不耐受,高风险的非肌肉浸润性膀胱癌(NMIBC),癌(CIS)具有或没有乳头状肿瘤;和IV。个人正在以以下方式之一(NCCN 2A)使用:
为了解决环境污染,我们开发了Ni/Al分层双氢氧化物氧化物(Ni/Al-Go)吸附剂材料,目的是消除甲基蓝(MB)染料污染物。通过检查许多实验因素,包括温度,再生/再利用程序,pH和时间及其对材料的影响,探索了吸附过程。等温线的适当模型是langmuir等温线。在60°C的温度下,MB染料的Ni/Al-Go材料的最大吸附能力为61.35 mg/g。热力学特征表明,随着温度的升高,吸附过程既具有吸热和自发性。再生方法表明,Ni/al-Go材料具有高度稳定的结构,因此可以将其用于五个循环,在第五个周期中的再生速率为93.49%。对所有材料产生最佳结果的pH是pH 10,动力学模型表现出伪二阶行为。版权所有©2024作者,由MKICS和BCREC Publishing Group发布。这是CC BY-SA许可证(https://creativecommons.org/licenses/by-sa/4.0)下的开放访问文章。关键字:分层双氢氧化物;氧化石墨烯;亚甲基蓝;吸附方法如何引用:A。Amri,S。Wibiyan,A。Wijaya,N。Ahmad,R。Mohadi,A。Lesbani(2024)。使用Ni/Al分层双氢氧化物氧化烯型复合材料有效地吸附亚甲基蓝色染料。化学反应工程与催化公告,19(2),181-189(doi:10.9767/bcrec.20121)permalink/doi:https://doi.org/10.9767/bcrec.20121
摘要:二氧化碳(CO 2)摄入量通过影响全球碳动态和气候稳定性来维持环境平衡至关重要。这项工作介绍了硫磺掺杂的多孔纳米碳(SDC)作为CO 2捕获的前瞻性吸附剂。SDC是通过利用椰子壳作为碳前体和过硫酸钾作为化学激活剂和硫掺杂剂而制造的。将硫的功能掺入碳矩阵中会产生结构可变性和活性位点,从而提高CO 2吸收能力。硫的特殊电结构允许与CO 2的分子间相互作用更大,从而增强了吸附性亲和力。根据实验数据,在0°C和1 bar和25°C和1 bar时,CO 2的吸收量最好在0°C和1 bar和2.56 mmol/g时测量为3.37 mmol/g。结果表明,SDC材料的较高孔隙度增加了CO 2摄取能力中的大型扩增。这项工作强调了硫掺杂,形态孔隙率和表面反应性之间的微妙相互作用,以增强CO 2隔离的有效性。SDC材料在应对当前的生态问题和开发CO 2收集技术方面具有巨大的希望。此处描述的建议的单步合成技术提供了一种可持续且环保的方法,用于合成用于碳捕获应用的SDC。关键字:多孔纳米碳,S兴奋剂,CO 2吸附,生物质,钾盐硫酸钾
致谢 本报告由美国环保署水务办公室工程与分析部的 S. Bekah Burket 和 Adrian Hanley 编写,通用动力信息技术公司 (GDIT) 的 Mirna Alpizar 和 Harry McCarty 协助编写。美国环保署感谢多家组织和个人在开发和验证水样中可吸附有机氟检测方法草案方面提供的支持,包括美国环保署工作组成员、原始程序的开发人员、提供大量废水样本的组织,以及美国环保署的支持承包商人员,他们在研究期间监督日常运营并协助美国环保署编写本报告。至少包括以下内容:
通过执行密度功能理论(DFT)计算来研究非甾体类抗炎药的吸附,提供了抽象的药物输送见解。布洛芬(IBU),由铁掺杂的碳化硅(FSIC)石墨烯单层。在这方面,优化了IBU,SIC和FSIC的单个模型以获得其稳定的几何形状和特征,其中为增强的FSIC石墨烯单层发现了出色的成就,可用于原始的SIC石墨烯单层,以与IBU物质相互作用。随后,通过重新调整Bimolecular模型来获得IBU@SIC和IBU@FSIC复合物,并以-1.44 kcal/kcal/kcal/kcal/kcal/mol和-43.14 kcal/mol/mol/mol,相应地,对IBU的相互作用和SIC和SIC和FSIC的单层相互作用的形成进行了研究。此外,还发现了铁掺杂区域在管理FSIC和IBU对应物之间的相互作用方面的显着作用。o…fe相互作用在IBU@FSIC复合物中的存在得到了分子(QTAIM)分析中原子量子理论的结果肯定。电子分子轨道结果表明,与SIC石墨烯单层相比,FSIC石墨烯单层较软,可以更好地参与与IBU物质的相互作用。比较了态度(DOS)图(DOS)图和能量差距(GAP)距离的距离(GAP)的距离(GAP)的距离(GAP)距离与单一石墨烯单层与复杂状态的边界分子水平的距离相比,FSIC比SIC更容易IBU检测IBU检测。作为最后的说明,在该领域进一步研究后,发现了IBU@FSIC复合物的适用性,可作为拟议的药物输送平台工作。
摘要:纳米纤维素是一种基于生物的材料,在水纯化领域具有巨大的潜力。可能用作从溶液中去除金属离子的关键吸附剂材料。然而,尚不清楚吸附在纤维素表面上的金属离子的结构。这项工作的重点是使用异常的小角X射线散射(ASAXS)定量地确定带负电荷的箱子型纤维素纳米晶体(CNC)的不同货架的金属离子的三维分布。这些分布会影响这些材料中的水和离子通透性。数据表明,将CNC表面的羧酸盐密度从740 mmol/kg增加到1100 mmol/kg改变了吸附离子的结构的性质,从单层变成了单层结构。单层在CNC纳米颗粒周围建模为船尾层,而多层结构则建模为纳米颗粒周围柱状层顶部的弥漫层。在船尾层中,最大离子密度从1680升至4350 mmol的RB + /(CNC的kg),随着纳米颗粒表面上的羧酸盐密度的增加。此外,数据表明,CNC可以利用多种机制(例如静电吸引力和交际效应)来吸附不同价值的植物。通过了解吸附金属离子的空间组织,可以进一步优化基于纤维素的吸附剂的设计,以提高分离应用中的吸收能力和选择性。关键字:纤维素纳米晶,吸附,异常小角X射线散射,吸附剂,水净化,离子交换a
CNC宽度测量是通过在Gwyddion软件中与高斯曲线拟合AFM高度轮廓(图S6(a))完成的,然后使用等式的峰值最大值(FWHM)的一半宽度使用公式𝐹𝑊𝐻𝑀=√2ln 2𝑏,其中B是Gwyddion的拟合参数参数输出。要校正AFM尖端扩展,AFM尖端半径和CNC高度可用于计算尖端曲率造成的额外宽度。使用庇护研究的FS-1500 AFM尖端,尖端半径为10 nm,通过AFM测量的MXG-CNC-COOH 1100的高度为2.4 nm。使用图S6(b)中说明的三角学,可以使用公式𝐿=√𝑟2 -𝑑2计算CNC一侧的一半高度的额外宽度为4.75 nm,其中r是尖端radius(10 nm)d是尖端半径半径半径为CNC高度(8.8 nm),是额外的宽度。从13 nm的测得的宽度中减去2𝐿导致校正后的MXG-CNC-COOH 1100宽度为3.5 nm。
1新墨西哥州阿尔伯克基桑迪亚国家实验室地球化学部2纳米级科学系,桑迪亚国家实验室,阿尔伯克基,新墨西哥州阿尔伯克基3高级科学与技术,桑迪亚国家实验室,桑迪亚国家实验室1新墨西哥州阿尔伯克基桑迪亚国家实验室地球化学部2纳米级科学系,桑迪亚国家实验室,阿尔伯克基,新墨西哥州阿尔伯克基3高级科学与技术,桑迪亚国家实验室,桑迪亚国家实验室
摘要。在本文中,已经提出了针对微孔和介质材料生产的两步优化策略。废物tachio壳被用作前体材料,以在其高碳和低灰分含量的含量上合成活性炭。开心果壳衍生的活化碳(PSAC)的合成包括碳化和KOH激活。优化的第一步提出的数学建模考虑了水分含量的效果,碳化样品中存在的碳和氢成分的分子质量以及H/C比。根据生物炭吞吐量(TP)和百分比稳定的碳含量(%C S),发现碳化产物在562.5 O C的碳化温度下最佳。然而,优化的第二步是根据N 2吸附 - 解析分析进行的,并建议使用703 m 2 /g的最高比表面积,最高的PSAC,超过微孔量的55%以上。此外,对CO 2的捕获评估以及与表征进行了表征,发现PSAC2是最高量的CO 2捕获量的最佳吸附剂。
家庭联盟是一个在线市场,可将消费者与可信赖的技术人员和服务提供商联系起来,以进行家庭和设备维修。他们正在为房主提供一种更好的方式,以找到所需的帮助,并为高质量的家庭服务公司建立业务。