急性脑切片制备是研究大脑突触功能特征的有力实验模型。尽管通常在冰冷温度 (CT) 下切割脑组织以方便切片并避免神经元损伤,但暴露于 CT 会导致突触的分子和结构变化。为了解决这些问题,我们研究了在冰冷和生理温度 (PT) 下制备的小鼠急性小脑切片中突触的超微结构和电生理特征。在 CT 下制备的切片中,我们发现脊柱明显丢失和重建、突触小泡重排和突触蛋白减少,而所有这些在 PT 下制备的切片中均未检测到。与这些结构发现一致,在 PT 下制备的切片显示出更高的释放概率。此外,在 PT 下制备允许在切片后立即进行电生理记录,从而与 CT 下相比,运动学习后长期抑郁 (LTD) 的可检测性更高。这些结果表明,在 PT 下切片制备对于研究不同生理条件下的突触功能具有显着优势。
在目前的临床前抗肿瘤研究中,普遍缺乏能够快速高效筛选有效抗肿瘤药物的体内模型。斑马鱼作为与人类基因相似度高达 87% 的物种,已被广泛用于模拟人类疾病,被认为是研究癌症发展、增殖和转移的替代经济模型。斑马鱼肿瘤异种移植模型已被有效用于各个层面的癌症药物开发,包括靶标验证和可能参与肿瘤调控的长链非编码 RNA (lncRNA) 的高通量筛选。在这篇综述中,我们全面概述了斑马鱼作为癌细胞生长、迁移、抗肿瘤免疫治疗和抗肿瘤药物筛选的体内模型。此外,一些活性 lncRNA 的调控机制已被确定在癌症的发病机制中发挥作用,但仍有必要利用高效的斑马鱼模型来筛选和进一步了解这些分子在肿瘤发展和迁移中的作用。目前的抗肿瘤疗法受到严重毒性和多药耐药性的限制。迫切需要经济高效的体内研究工具来提高我们的理解并克服这些问题。本文综述了使用斑马鱼模型进行抗肿瘤研究的不同目的。我们讨论了斑马鱼在癌细胞增殖和转移、识别信号通路、癌症药物发现和治疗开发以及毒性研究中的应用。最后,本综述强调了该领域的局限性和未来方向,以有效利用斑马鱼作为癌症治疗开发的高效模型。
● 1943 年 - Pitts 和 McCulloch 创建了基于人脑神经网络的计算机模型 ● 20 世纪 60 年代 - 反向传播模型基础 ● 20 世纪 70 年代 - AI 寒冬:无法兑现的承诺 ● 20 世纪 80 年代 - 卷积出现,LeNet 实现数字识别 ● 1988-90 年代 - 第二次 AI 寒冬:AI 的“直接”潜力被夸大。AI = 伪科学地位 ● 2000-2010 年 - 大数据引入,第一个大数据集 (ImageNet) ● 2010-2020 年 - 计算能力,GAN 出现 ● 现在 - 深度学习热潮。AI 无处不在,影响着新商业模式的创建
交叉空间是一种公共资源,必须在车辆之间有效地共享,这些轨迹与几条公路车道相互矛盾。交通信号灯控制(TLC)策略的主要目标是通过允许车辆依次允许车辆,同步或同步进行车道之间的交叉点访问。在这项工作中,我们比较了交叉路口的道路网络中五种最先进的TLC方法的性能。其中,三种方法一次从一个道路车道依次使用车辆,一种方法允许车辆从对面的车道相称,最后一种方法使车辆同步车辆从所有非冲突的道路车道通往交叉路口,每道道路车道一辆车道。SUMO仿真结果表明,在网络吞吐量,旅行时间损耗和相关的燃油消耗方面,同步方法在多种情况下的顺序和平行方法的表现优于顺序和平行方法。
微型化是一种快速发展的方法,可用于生产非常小的电子、机械和光学产品和设备,包括计算机、半导体芯片、传感器、生物传感器、IC 和内置于车辆中的微处理器等等。如今,人们可以看到小型便携式设备,可以随时随地放在口袋中携带,其背后的原因是技术可以灵活地将组件微型化,并具有许多优点和应用。微型化不仅在电子产品中,还在纳米技术的进步中发挥着重要作用,这使得制造具有特殊功能和特性的各种结构成为可能。小尺寸和轻便性是混合微电路的优势;它们长期以来一直用于起搏器的除颤器、助听器、柔性聚酰亚胺结构和许多其他应用。便携式设备的微型化和集成化日益显著,可穿戴计算正在实现。本文旨在理解小型化的概念、其优点、缺点和应用
lix.pure SLC提供了基于雷达的运动检测,对行人,周期和车辆具有集成的调光控制和无线网络。该传感器是一个紧凑的插件系统,用于脚和循环路径,停车场和交通缓慢。朝下的Zhaga插座上的简单附件使动态照明控制特别容易。
摘要:抗生素的病原体越来越普遍和有问题。传统的抗生素不再是处理这些多物种微生物的可行选择,因此需要新的方法。噬菌体衍生的蛋白质(例如内olysins)可以提供一种有效的溶液。内olysins是噬菌体编码的肽聚糖水解酶,通过靶向细胞壁,特别是在革兰氏阳性细菌中,由于其天然暴露的肽聚糖层而作用于细菌细胞。近年来,这些裂解酶因其特殊的行动方式,工程潜力和缺乏抵抗机制而受到了科学界的极大兴趣。在过去十年中,对内olysin疗法的新兴趣导致了许多成功的应用。重组内olysins已被证明对明显的病原体有效,例如MRSA,单核细胞增生李斯特菌,生物纤维形成中的葡萄球菌菌株和铜绿假单胞菌。内叶蛋白也已与其他抗菌剂结合研究,从而产生协同作用。尽管Endolysin Therapy带来了一些监管和后勤障碍,但随着工程“下一代”裂解素的出现,未来看起来很有希望。本综述将重点放在内olysins成为可行的新抗菌疗法以及一路上可能必须克服的挑战的可能性上。
1个INSERM单位iSché再灌注,tabolism和炎症(Irmertist),UMR U1313,F-86073 Poitiers,法国; lepoittevin.maryne@gmail.com(M.L。); luc.pellerin@univ-poitiers.fr(l.p。); thierry.hauet@univ-poitiers.fr(T.H.)2法国Poitiers,Poitiers,Poitiers,法国Poitiers 3 UMR CNR 7285,环境化学研究所和Matériauxde Poitiers(IC2MP),Poitiers,4 Rue Michel-Brunet,TSA 51106,F-866073,Poitiers(IC2MP), quentin.blancart.remaury@univ-poitiers.fr 4 Litec,Chu de Poitiers,病毒学和Mycobact ES Rioology实验室,POITIERS,POITIERS,2 RMILéTrie,F-86000 Poitiers,法国; nicolas.leveque@chu-potiers.fr 5重症监护医学部,法国F-86021 Poitiers,法国; arnaud.thille@chu-poitiers.fr(A.W.T。); karine.salaun@chu-poitiers.fr(K.S.)6法国Poitiers Chu Poitiers的Gériatric医学系; thomas.brunet@chu-poitiers.fr 7内科和传染病部,法国F-86021 POITIERS CHU POITIERS; melanie.catroux@chu-poitiers.fr 8生物学系,法国F-86021 Poitiers,法国 *通信 *通信:raphael.thuillier@univ-poitiers.fr
CRISPR 是一种非常强大的技术,可以调节基因组中的任何靶基因,具有良好的治疗目的。CRISPR-Cas9 是一种方便的基因操作工具。尽管如此,人类基因编辑,特别是生殖基因的广泛后果尚无法预测。首先,一旦编辑,基因将成为人类后代的一部分,可能无法从人类中消除;其次,成功率无法保证;第三,编辑的保真度,因为它可能会影响不相关的基因或未指定的 DNA 片段;最后但并非最不重要的是,它对基因相互作用、网络和信号通路的影响可能难以预测。CRISPR-Cas9 主要包括精确的基因组编辑、快速性和成本效益、疾病模型的创建、基因功能的研究、基因治疗和转化研究中的应用以及物种的广泛多样性。该技术还引发了科学界的道德和伦理担忧。美国国立卫生研究院 (NIH) 要求对人类细胞中的基因修饰进行伦理和安全批准。 NIH 目前不资助人类胚胎中 CRISPR 的研究,并反对在生殖细胞中使用 CRISPR,因为这些改变将是永久性的和可遗传的。该技术有望对癌症治疗产生最深远的影响。基于 CRISPR 的技术的最新进展正在重新定义癌症的研究方式,并有可能改善抗癌疗法。改进该技术的一种方法是使用机器学习方法来理解 CRISPR 错误并预测更具体的编辑和修复结果。
工程领域的人工智能依赖于许多技术,例如机器学习,人工神经网络,数据分析,分类和预测。使用这些技术,工程师可以改善流程并提供更高效,更准确的解决方案。人工智能工程师有助于推进人工智能领域,有助于塑造行业的突破性和创新,改善用户体验,并推动各个部门的自动化,包括医疗保健,金融,零售,零售等。他们的作品在利用AI的力量方面发挥了关键作用,以革新技术如何与世界互动,并增强计算机系统执行曾经是人类智能独有的任务的能力。本文对人工智能(AI)对工程创新的影响进行了全面分析。随着AI技术的快速发展,其在工程中的应用已改变了传统流程,并为创新开辟了新的可能性。这项工作探讨了AI影响工程实践的各种方式,例如设计,制造,优化和维护。它研究了将AI集成到工程过程中的优势和挑战,并突出了利用AI提高效率,准确性和创造力的潜在好处。通过对现有文献和案例研究的深入分析,这项研究有助于更好地理解AI与工程创新之间的复杂关系,为该领域的研究人员和从业人员提供见解。这项工作的目的是对AI如何影响工程创新进行全面分析。它探讨了AI在改变设计,制造,优化和维护等各种工程过程中的潜力。它研究了与将AI集成到工程>的优势和挑战