敌方“红军”利用自身先进的能力以及为蓝方设计的作战方式,在联合部队发挥全部战斗力之前,便迅速与入侵部队远距离交战。红军的反介入/区域拒止部队主要攻击具有关键“越滩”能力的两栖攻击舰。岸基弹道导弹和巡航导弹(部分为高超音速导弹)空射系统和海上打击装备汇聚在一起,实施了大规模的多领域打击,对两栖舰队造成了严重破坏。两栖舰艇从未登陆入侵海滩。这使得运送陆军编队的运输船只能继续前往目标;然而,由于运输船缺乏两栖舰艇的越滩能力,因此运输船需要降落在一个正常运行的港口卸下陆军部队。
最近,端到端语音综合中已采用神经声码器将中间光谱表示转换为相应的语音波形。在本文中,提出了两个基于生成的对抗性网络(GAN)的声码器,平行的Wavegan和Hifi-GAN,用于缅甸终端语音综合和主观评估,以比较模型的绩效。主观评估结果表明,在小型缅甸语音数据集中训练的两个模型都以快速的推理速度实现了高保真性语音综合,表明了对未见扬声器的旋光磁化倒置的能力。具体来说,在端到端的语音合成中,tacotron2与Hifi-Gan Vocoder的Tacotron2达到了最先进的性能,从而获得了4.37的缅甸语言意见分数(MOS)。
随着人工智能的扩散,累积的数据量大幅增加并以数字方式分发。由于数据可在具有复杂且复杂的基础设施的数字景观中在线获得,因此基于网络安全的各种防御机制至关重要。是深入学习模型的生成对抗网络(GAN)已成为解决不断变化的安全问题的强大解决方案。这项调查研究了深度学习模型的重要性,正是对GAN的增强网络安全防御的重要性。我们的调查旨在探索gan中完成的各种作品,例如入侵检测系统(IDS),移动和网络侵入,僵尸网络检测和恶意软件检测。重点是研究gan如何成为有影响力的工具来增强这些领域中的网络安全防御。此外,本文讨论了在这些领域使用gans的挑战和约束,并提出了未来的研究方向。总的来说,本文突出了甘恩在增强网络安全措施中的潜力,并解决了该领域进一步探索的必要性。
摘要 - 随着现实世界中的这种技术的增加,对自主驾驶(AD)系统和组件的验证和验证越来越重要。安全性 - 关键场景生成是通过闭环培训来鲁棒性策略的关键方法。然而,场景生成的现有方法依赖于简单的目标,从而导致过度攻击或非反应性的对抗性。为了产生多样化的对抗性但现实的场景,我们提出了印章,即一种方案扰动方法,利用了学分的得分功能和对抗性,类似的人类技能。密封扰动的场景比SOTA基准更现实,从而改善了超过20%以上的真实世界,分布和分布外情景的自我任务成功。为了促进未来的研究,我们发布了我们的代码和工具:https://github.com/cmubig/seal
摘要:电垂直起飞和着陆(EVTOL)飞机代表了一种关键的航空技术,以改变未来的运输系统。EVTOL飞机的独特特征包括降低噪声,低污染物的发射,有效的操作成本和灵活的可操作性,同时,这对先进的电力保留技术构成了关键的挑战。因此,由于EVTOL起飞过程中的巨大功率需求,最佳起飞轨迹设计至关重要。传统的设计优化,但是,以迭代方式采用高保真模拟模型,从而产生了计算密集型机制。在这项工作中,我们实施了一个支持替代物的倒数映射优化体系结构,即直接预测设计要求(包括飞行条件和设计约束)的最佳设计。经过训练的逆映射替代物执行实时最佳EVTOL起飞轨迹预测,而无需运行优化;但是,一个培训样本需要在此反映射设置中进行一个设计优化。反向映射的过度训练成本和最佳EVTOL起飞轨迹的特征需要开发回归生成的对抗网络(Reggan)代理。我们建议通过转移学习(TL)技术进一步增强Reggan的预测性能,从而创建一种称为Reggan-TL的方案。在这项工作中,发电机采用设计要求作为输入并产生最佳的起飞轨迹配置文件,而歧视器则在培训集中区分了生成的配置文件和真正的最佳配置文件。尤其是,提议的核根方案利用了由发电机网络和鉴别器网络组成的生成对抗网络(GAN)架构,并具有均一平方误差(MSE)和二进制跨透镜(BC)的组合损失,用于回归任务。综合损失有助于双重方面的发电机培训:MSE损失目标是生成的概况和培训对应物之间的最小差异,而BC损失则驱动了生成的配置文件,以与训练集共享类似模式。我们证明了Reggan-TL在空中客车A 3 Vahana的最佳起飞轨迹设计上的实用性,并将其与代表性替代物的性能进行了比较,包括多输出高斯工艺,条件gan和Vanilla Reggan。结果表明,Reggan-TL仅使用200个训练样本,而最佳参考替代物需要400个样本,达到了99.5%的概括精度阈值。培训费用减少了50%,降低了Reggan-TL实现的概括准确性的标准偏差,证实了其出色的预测性能和广泛的工程应用潜力。
近年来,单发语音转换(VC)取得了重大进步,使能够用一个句子改变说话者特征。但是,随着该技术的成熟并产生了越来越现实的说法,它很容易受到隐私问题的影响。在本文中,我们提出了RW-Voiceshield,以保护声音免于复制。这是通过通过使用基于原始波形的生成模型产生的不可察觉的噪声来有效攻击单发VC模型来实现的。使用最新的单发VC模型进行测试,我们进行了测试,在黑盒和白色盒子方案下进行主观和客观评估。我们的结果表明,VC模型产生的话语与受保护的说话者的话语之间的说话者特征存在显着差异。此外,即使在受保护的话语中引入了对抗性噪声,说话者的独特特征仍然可以识别。索引术语:语音转换,对抗性攻击,扬声器verification,扬声器表示
由于对抗性攻击,诸如机器学习之类的流派存在着相当大的威胁,其中包括故意用会改变决策区域的数据为系统提供。这些攻击致力于以模型在分类或预测中是错误的方式向机器学习模型展示不同的数据。研究领域仍然相对年轻,必须发展强大的科学研究身体,以消除当前知识的差距。本文根据Scopus数据库中发表的高度引用的文章和会议提供了对抗性攻击和防御措施的文献综述。通过对128个系统文章的分类和评估:80篇原始论文和48篇评论论文,直到2024年5月15日,本研究对不同领域的文献进行了分类和审查,例如图形神经网络,Iot系统的深度学习模型等。该评论对确定的指标,引文分析和这些研究的贡献提出了发现,同时暗示了该地区对对抗性鲁棒性和保护机制的进一步研究和发展。这项工作的确定目标是介绍对抗性攻击和防御的基本背景,并需要维持机器学习平台的适应性。在这种情况下,目标是为在各个行业的AI应用中建立高效和可持续的保护机制做出贡献
•不受限制的对抗攻击旨在使用生成模型生成自然的对抗示例。•先前的攻击直接将类似PGD的梯度注入生成模型的采样,从而损害发电质量。
摘要 - 生成的对抗网络(GAN)是一种能力的生成技术,但甘斯经常面临训练不稳定的挑战。网络体系结构在确定gan的最终性能中起着重要作用,但是设计精细的体系结构需要深入的领域知识。本文旨在通过通过神经体系结构搜索(NAS)来搜索高性能的架构来解决此问题。所提出的方法称为Ewsgan,基于重量共享,由两个步骤组成。首先,我们根据重量共享培训了一条发电机的超级网。然后,采用多目标进化算法从超级网中提取子网,并且通过直接从超级网遗传的权重进行健身评估,并且对候选网络结构的帕累托前部进行了搜索。两种策略用于稳定发电机的超级网的训练:公平的单路抽样策略和丢弃策略。实验结果表明,我们的方法设计的架构达到了FR´Echet Inception距离(FID)为9.09,而在CIFAR-10上获得了8.99的成立分数(IS),这是NAS-GANS领域的新最先进的。在STL-10上也获得了竞争结果(IS = 10.51,FID = 21.89)。
摘要:背景:近年来,针对皮肤状况的计算机辅助诊断已取得了重大进展,主要是由人工智能(AI)解决方案驱动的。,尽管取得了这种进步,但支持AI的系统的效率仍然受到高质量和大规模数据集的稀缺性的阻碍,这主要是由于隐私问题所致。方法:本研究通过使用生成的对抗网络(GANS)创建具有不同痤疮严重程度(轻度,中度和严重)的人脸的合成数据集来规避与现实世界痤疮数据集相关的隐私问题。此外,三个对象检测模型 - Yolov5,Yolov8和detectron2-用于评估增强数据集检测痤疮的功效。结果:将StyleGAN与这些模型集成在一起,结果证明了平均平均精度(MAP)分数:Yolov5:73.5%,Yolov8:73.6%,检测2:37.7%。这些得分超过没有gan的地图。结论:这项研究强调了GAN在产生合成面部痤疮图像中的有效性,并强调了利用gans和卷积神经网络(CNN)模型的重要性,以进行准确的痤疮检测。