Aeroservices是航空业的全球参与者,提供单点供应链和库存管理服务。AeroServices的合同和临时服务组合包括维修和维护航空组件;组件,润滑剂,化学消耗品,工具和轮胎的分布;以及租赁和管理主要资产,例如飞机发动机,APU和LOADING GEARS,我们拥有的资产组合。
航空弹性振动是由空气动力和风力涡轮叶片的结构动力学之间的复杂相互作用引起的,是导致疲劳,结构损伤,效率降低以及风力涡轮机系统中维护成本提高的主要原因。解决此问题对于增强风力涡轮机的运行性能,耐用性和寿命至关重要,这使得振动控制成为可再生能源行业的关键重点。本文研究了同步开关阻尼(SSD)模态方法,这是一种非线性控制技术,专门为其通过靶向和抑制不需要的振动模式而有效减轻航空弹性振动的能力。通过将压电组件与刀片运动和谐的指定电路同步,SSD模态方法可提供精确而适应性的振动控制。我们的研究证明了半活动模态SSD方法的有效性,从而降低了叶片振动的30.42%。这种实质性的减少不仅增强了整体性能,还可以增强风力涡轮机叶片的寿命,从而在振动控制策略方面取得了重大进步,并有助于开发更可靠和有效的风能系统。
支持讨论:设想的远期可持续航空目标可能需要开发具有NASA目前拥有的功能的劳动力。除了根据研究基于研究种植未来劳动力需求的种子外,与国防部,FAA或行业等合作伙伴的合作还可以帮助告知其他人需要培养人才的地方。NASA的位置良好,可以直接与学术界分享结果,并与大学影响计划,以积极发展未来所需的技能。
航空航天工程理学学士学位成功地培养了未来的航空航天工程师,使他们能够在多学科团队中工作,以创新的方式设计产品和开展研究,从而对地区、国家和全球产生积极影响。该课程侧重于将工程原理应用于飞机、导弹和航天器等航空航天飞行器的设计、制造和功能。学生在接触轨道力学、空间结构和火箭推进的同时,深入了解空气动力学、工程材料和工艺、结构、推进、飞行力学和控制。
Shuji Ogawa•出生于日本名古屋。•从小就帮助父亲进行了实验和发明,并渴望成为飞行员和宇航员。•毕业于东北大学研究生院航空工程部。开发了飞机和汽车零件。•空间运输系统小组委员会成员,内阁办公室国家太空政策办公室。•Shuji是公司的创始人和CTO。
通过飞行方程物理学、任务分析、推进、结构、材料和民用及军用飞机/航天器的控制系统,了解现代飞机和航天器的技术发展。通过新兴的伦理考量和全球影响,综合当前和未来的航空航天技术。4 个讲座。课程可以课堂授课或在线授课。交叉列为 AERO/HNRS 310。满足 GE 高级 B 课程要求(2019-20 年目录中的学生的 GE 区域 B5、B6 或 B7)。
1. 让学生和来访者熟悉宾夕法尼亚州立大学航空航天工程系。2. 为每位航空航天工程专业的学生提供有关该系及其课程的中央信息来源。3. 为学生提供毕业要求清单,以便他们跟踪课程进度。该专业主要面向对飞机和航天器的分析、设计和操作感兴趣的学生。前两年的学习与其他工程专业的学习相似,为学生提供工程专业的基础教育。由于工程实践变化迅速,因此重点放在那些为未来从事航空航天工程工作奠定最坚实、最广泛基础的物理和科学原理和方法上。根据大四时选择的技术课程,学生可以侧重航空或航天,以及这些领域内的特定技术领域,包括空气动力学、结构力学、飞行力学、推进和控制。打算在四年内毕业的学生必须在第三年开始前成功完成 EMCH 212、CMPSC 201(或 121、131 或 200)以及 MATH 220、230 和 250(或 251),以满足接下来两年的毕业要求。大四修读的九个技术选修学分中,有六个必须是航空航天工程课程。我代表整个部门欢迎您来到航空航天工程系!教职员工将尽一切努力让您的学习变得有趣且富有成效。我们强烈建议您定期在 LionPath 上查看您的学位审核(或学术要求),并与您的学术顾问会面,讨论课程安排、职业机会或其他事项。如有任何疑问,请随时与我们联系。祝您成功,航空航天工程教授兼本科生研究主任 Robert G. Melton
February 4, 2025 Docket Operations, M-30 U.S. Department of Transportation 1200 New Jersey Avenue SE Room W12-140, West Building Ground Floor Washington, DC 20590-0001 Re: Comments on the Petition for Exemption for Houff Corporation Docket Number: FAA-2023-0699 To Whom It May Concern: The National Agricultural Aviation Association (NAAA) appreciates the opportunity to comment on以上引用的案例。美国航空应用行业背景NAAA代表了1,560个航空应用行业所有者/运营商和2,028名非经营者农业飞行员的利益,该飞行员被许可作为商业申请者,这些飞机使用飞机来增强食品,纤维,纤维,生物味的生产;保护林业;保护水道和牧场免受入侵物种;并为机构和房主团体提供服务,以控制蚊子和其他威胁健康的害虫。在农业和其他有害生物控制的情况下,船员的空中应用是应用农药的重要方法,因为它允许大面积迅速覆盖,这是迄今为止最重要的作物输入的应用方法。它比其他任何形式的应用都更加利用了通常的可接受天气时期,以供喷洒,并允许在害虫处处于关键的发育阶段时及时处理它们,通常在地形上过于湿润或无法在地面应用中无法访问。它还在农作冠层上方处理,因此不会破坏作物并破坏作物。航空应用具有更高的生产率,准确性,速度和缺乏作物的损害。1虽然平均航空申请公司只有六名员工和两架飞机,但作为一个行业,这些小型企业每个季节都会处理近1.27亿英亩的美国农田,约占美国用于农作物生产的所有农田的28%除了耕地英亩外,航空施用者每年还适用于510万英亩的林地,790万英亩的牧场和牧场,以及480万英亩的蚊子控制和其他公共卫生问题。
摘要:城市空中交通 (UAM) 是指在大都市地区为有人驾驶飞机和无人机系统提供安全高效的空中交通运营,目前正由工业界、学术界和政府进行研究和开发。这种交通方式为构建一个绿色可持续的子行业提供了机会,它借鉴了数十年来航空业的经验教训。由于电动垂直起降 (eVTOL) 飞机操作无污染且空中交通管理简单,目前正在为此目的开发和试验这种技术。然而,要成功完成认证和商业化阶段,需要克服几个挑战,特别是在性能方面,例如飞行时间和续航能力以及可靠性。本文开发了一种快速确定 eVTOL 多旋翼飞行器推进链组件尺寸和选择方法,并在 GTOW 为 15 公斤的电动多旋翼飞行器缩小比例原型上进行了验证。该方法与储能系统配置的比较研究相关,以评估它们对飞行器飞行时间的影响。首先,使用全局非线性优化选择最佳的电机/螺旋桨对,以最大限度地提高这些部件的比效率。其次,确定五种储能技术的尺寸,以评估它们对飞行器飞行时间的影响。最后,基于此尺寸确定过程,使用基于推进链供应商数据的回归方法评估每种储能配置的优化推进链总起飞重量 (GTOW)。
摘要:果胶气凝胶,密度非常低(约0.1 g cm -3)和高比表面积(高达600 m 2 g -1),是出色的热绝缘材料,因为它们的导热率低于环境条件下的空气(0.025 w m -1 k -1 k -1)。然而,由于其内在亲水性,与水蒸气接触时果胶气凝胶塌陷,失去了超跨性能。在这项工作中,首先制作了果胶气凝胶,并研究了不同过程参数对材料结构和特性的影响。所有纯果胶气凝胶的密度低(0.04-0.11 g cm-1),高比表面积(308–567 m 2 g - 1)和非常低的热电导液(0.015-0.0.023 w m-1 k-1 k-1)。然后,使用不同的反应持续时间(2至24 h),通过甲基三甲氧基硅烷的化学蒸气沉积果胶疏水凝胶。通过在气候腔中进行调节(25℃,80%的相对湿度),记录了疏水性对材料特性的影响,尤其是对热导率的影响。疏水导致与整洁的果胶气凝剂相比,导热率的增加。mTMS沉积16小时有效地在潮湿的环境(接触角115°)和稳定材料特性(0.030 w m -1 k -1)和测试周期为8个月的测试周期中没有波动的材料(0.030 w m -1 k -1),有效地溶出了果胶气凝胶和稳定材料的稳定材料特性。