航空航天环境是 RSESS 重点领域的核心课程,旨在向您介绍近地空间环境及其对航天器、通信系统、宇航员等的影响。从事空间技术或应用的航空航天工程师需要对环境有广泛的了解,以便适当地设计他们的航天器。但更一般地说,任何对太空充满热情的人都会对了解太空环境的不同区域、它们如何相互耦合和影响以及它们如何影响我们的日常生活感兴趣。我们将“近地”空间环境定义为受太阳影响的环绕地球的空间区域,也是我们大多数卫星运行的地方。因此,本课程重点介绍环绕地球的空间环境——不要指望了解太阳系、星系、行星际空间等。但是,我们将研究其他行星周围的环境,以便与地球进行比较,例如“近木星”空间环境。近地空间环境从地球表面一直延伸到弓形激波,弓形激波是磁层的外边界。在这个环境中,有不同的重叠区域:由中性分子和原子组成的大气层;电离层,大气中的气体被电离;等离子层,气体完全电离并被困在地球磁场中;以及辐射带,其中包含高能电子和质子。这些区域受到地球磁场的影响,而该磁场占主导地位的区域称为磁层。磁层内有不同种类的粒子、不同的电流以及各种复杂的等离子体和电磁波。此外,环境中还包含我们太阳系中的尘埃和流星体,以及我们直接负责的航天器和轨道碎片。在本课程中,我们将了解每个区域、它们存在的原因以及它们对航天器、宇航员和社会各个方面产生的积极和消极影响。它们对航天器和宇航员有电和辐射影响;对 GPS 和其他航天器的通信信号有影响;磁场扰动对地面有影响;尘埃和流星体对航天器有影响;等等。本课程分为多个模块,涵盖太空环境的每个区域,每个模块大约持续两周。在每个模块中,将阅读指定
NASA 对液态和气态氧环境中使用的替代清洁溶剂的测试要求概述(John W. Strickland 和 ...................................................................................................................... S. Eddie Davis)...... CFC 关键区域响应 (CAR) 包的开发(J. Wayne McCain)
通常,作战需求将对航空航天平台的作战场景和所需任务能力进行一般性描述。综合导航系统将具有各种作战模式,这些模式将以各种方式对其所处的特定作战环境做出反应。因此,作战需求必须详细阐述预期任务,并定义任务每个阶段对导航系统的要求。技术需求必须将多种任务能力和环境转化为技术能力和参数,以便开发系统设计。
在过去的几十年里,航天/航空航天飞行器的先进制导与控制 (G&C) 系统的设计受到了全世界的广泛关注,并将继续成为航空航天工业的主要关注点。毫不奇怪,由于存在各种模型不确定性和环境干扰,基于鲁棒和随机控制的方法在 G&C 系统设计中发挥了关键作用,并且已经成功构建了许多有效的算法来制导和操纵航天/航空航天飞行器的运动。除了这些面向稳定性理论的技术外,近年来,我们还看到一种日益增长的趋势,即设计基于优化理论和人工智能 (AI) 的航天/航空航天飞行器控制器,以满足对更好系统性能日益增长的需求。相关研究表明,这些新开发的策略可以从应用的角度带来许多好处,它们可以被视为驱动机载决策系统。本文系统地介绍了能够为航天/航空航天飞行器生成可靠制导和控制命令的最先进的算法。本文首先简要概述了航天/航空航天飞行器的制导和控制问题。随后,讨论了有关基于稳定性理论的 G&C 方法的大量学术著作。回顾并讨论了这些方法中固有的一些潜在问题和挑战。然后,概述了各种最近开发的基于优化理论的方法,这些方法能够产生最佳制导和控制命令,包括基于动态规划的方法、基于模型预测控制的方法和其他增强版本。还讨论了应用这些方法的关键方面,例如它们的主要优势和固有挑战。随后,特别关注最近探索 AI 技术在飞行器系统最佳控制方面的可能用途的尝试。讨论的重点说明了航天/航空航天飞行器控制问题如何从这些 AI 模型中受益。最后,总结了一些实际实施考虑因素以及一些未来的研究主题。
参数 尺寸 单位 质量 M 千克,kg 长度 L 米,m 时间 T 秒,s 温度 Ϫ 开尔文,K,摄氏度 速度 L/T 米/秒,m/s 密度 ML –3 千克/米 3 力 ML –1 T –2 牛顿,N = 1 千克·米/秒 2 压力 ML 2 T –2 N/米 2 ,帕斯卡,Pa 能量,功 ML 2 T –3 Nm,= 焦耳,J 功率 ML 2 T –3 J/s,瓦特,W 绝对粘度 ML –1 T –1 Ns/米 2 ,Pa-s 运动粘度 L 2 T –1 米 2 /s 热导率 MLT –3 Ϫ –1 W/mK,W/mo C
2. AS5011 - 可压缩流体流动课程内容:流体力学:流体流动的分类;欧拉和拉格朗日观点;流线、条纹线和路径线;速度梯度张量;流体流动控制方程;柯西应力;边界层;库埃特流。可压缩流动:热力学回顾;等熵流动关系;压缩性、声速和马赫数;一维稳定流动:绝热、无摩擦流动,有正激波 – 胡戈尼奥曲线、范诺流、瑞利流;二维稳定流动:有斜激波的流动、θ - β -M 曲线、普朗特-迈耶膨胀扇;一维非稳定流动:移动激波、激波管;流经 CD 喷嘴:面积-马赫关系、阻塞流、欠膨胀和过膨胀喷嘴;线性亚音速和超音速流动 – 普朗特-格劳尔特关系
由 Emerald 出版。这是已获作者认可的手稿,其发行方式为:知识共享署名非商业许可证 (CC:BY:NC 4.0)。最终出版版本(记录版本)可在线获取,网址为 DOI:10.1108/AEAT-07-2022-0197。请参阅任何适用的出版商使用条款。
WT9 Dynamic LSA / Club 飞机是单引擎、双座(并排排列)、悬臂式低翼飞机,带有十字形尾翼。主要结构由玻璃和碳复合材料组成。飞机配备固定三轮起落架,带有可操纵前轮。飞机由 4 缸、水平对置、风冷和水冷、化油器 4 冲程 ROTAX 912 ULS2 发动机驱动,最大功率为 73.5 千瓦(100 马力),转速为 5800 rpm。该飞机的基本版本配备螺旋桨 EVRA PerformanceLine 175/xxx/805.5。它是 3 叶地面可调螺旋桨,直径为 1750 毫米(68.9 英寸)。它具有木质核心叶片,外面覆盖着玻璃纤维,前缘加固。叶片安装在铝制轮毂中。螺旋桨轮毂连接到法兰和底板上,并固定在发动机的螺旋桨法兰上。复合材料螺旋桨固定在底板上。牵引版本配备螺旋桨 KW-31 (EASA.P.177),这是一种 3 叶片电动飞行可调式飞机螺旋桨,直径为 1.726 米 (67.95 英寸)。叶片由实木和复合材料组合而成。螺旋桨可以手动或自动模式作为恒速螺旋桨操作。