Shuji Ogawa•出生于日本名古屋。•从小就帮助父亲进行了实验和发明,并渴望成为飞行员和宇航员。•毕业于东北大学研究生院航空工程部。开发了飞机和汽车零件。•空间运输系统小组委员会成员,内阁办公室国家太空政策办公室。•Shuji是公司的创始人和CTO。
通过飞行方程物理学、任务分析、推进、结构、材料和民用及军用飞机/航天器的控制系统,了解现代飞机和航天器的技术发展。通过新兴的伦理考量和全球影响,综合当前和未来的航空航天技术。4 个讲座。课程可以课堂授课或在线授课。交叉列为 AERO/HNRS 310。满足 GE 高级 B 课程要求(2019-20 年目录中的学生的 GE 区域 B5、B6 或 B7)。
1. 让学生和来访者熟悉宾夕法尼亚州立大学航空航天工程系。2. 为每位航空航天工程专业的学生提供有关该系及其课程的中央信息来源。3. 为学生提供毕业要求清单,以便他们跟踪课程进度。该专业主要面向对飞机和航天器的分析、设计和操作感兴趣的学生。前两年的学习与其他工程专业的学习相似,为学生提供工程专业的基础教育。由于工程实践变化迅速,因此重点放在那些为未来从事航空航天工程工作奠定最坚实、最广泛基础的物理和科学原理和方法上。根据大四时选择的技术课程,学生可以侧重航空或航天,以及这些领域内的特定技术领域,包括空气动力学、结构力学、飞行力学、推进和控制。打算在四年内毕业的学生必须在第三年开始前成功完成 EMCH 212、CMPSC 201(或 121、131 或 200)以及 MATH 220、230 和 250(或 251),以满足接下来两年的毕业要求。大四修读的九个技术选修学分中,有六个必须是航空航天工程课程。我代表整个部门欢迎您来到航空航天工程系!教职员工将尽一切努力让您的学习变得有趣且富有成效。我们强烈建议您定期在 LionPath 上查看您的学位审核(或学术要求),并与您的学术顾问会面,讨论课程安排、职业机会或其他事项。如有任何疑问,请随时与我们联系。祝您成功,航空航天工程教授兼本科生研究主任 Robert G. Melton
February 4, 2025 Docket Operations, M-30 U.S. Department of Transportation 1200 New Jersey Avenue SE Room W12-140, West Building Ground Floor Washington, DC 20590-0001 Re: Comments on the Petition for Exemption for Houff Corporation Docket Number: FAA-2023-0699 To Whom It May Concern: The National Agricultural Aviation Association (NAAA) appreciates the opportunity to comment on以上引用的案例。美国航空应用行业背景NAAA代表了1,560个航空应用行业所有者/运营商和2,028名非经营者农业飞行员的利益,该飞行员被许可作为商业申请者,这些飞机使用飞机来增强食品,纤维,纤维,生物味的生产;保护林业;保护水道和牧场免受入侵物种;并为机构和房主团体提供服务,以控制蚊子和其他威胁健康的害虫。在农业和其他有害生物控制的情况下,船员的空中应用是应用农药的重要方法,因为它允许大面积迅速覆盖,这是迄今为止最重要的作物输入的应用方法。它比其他任何形式的应用都更加利用了通常的可接受天气时期,以供喷洒,并允许在害虫处处于关键的发育阶段时及时处理它们,通常在地形上过于湿润或无法在地面应用中无法访问。它还在农作冠层上方处理,因此不会破坏作物并破坏作物。航空应用具有更高的生产率,准确性,速度和缺乏作物的损害。1虽然平均航空申请公司只有六名员工和两架飞机,但作为一个行业,这些小型企业每个季节都会处理近1.27亿英亩的美国农田,约占美国用于农作物生产的所有农田的28%除了耕地英亩外,航空施用者每年还适用于510万英亩的林地,790万英亩的牧场和牧场,以及480万英亩的蚊子控制和其他公共卫生问题。
摘要:城市空中交通 (UAM) 是指在大都市地区为有人驾驶飞机和无人机系统提供安全高效的空中交通运营,目前正由工业界、学术界和政府进行研究和开发。这种交通方式为构建一个绿色可持续的子行业提供了机会,它借鉴了数十年来航空业的经验教训。由于电动垂直起降 (eVTOL) 飞机操作无污染且空中交通管理简单,目前正在为此目的开发和试验这种技术。然而,要成功完成认证和商业化阶段,需要克服几个挑战,特别是在性能方面,例如飞行时间和续航能力以及可靠性。本文开发了一种快速确定 eVTOL 多旋翼飞行器推进链组件尺寸和选择方法,并在 GTOW 为 15 公斤的电动多旋翼飞行器缩小比例原型上进行了验证。该方法与储能系统配置的比较研究相关,以评估它们对飞行器飞行时间的影响。首先,使用全局非线性优化选择最佳的电机/螺旋桨对,以最大限度地提高这些部件的比效率。其次,确定五种储能技术的尺寸,以评估它们对飞行器飞行时间的影响。最后,基于此尺寸确定过程,使用基于推进链供应商数据的回归方法评估每种储能配置的优化推进链总起飞重量 (GTOW)。
摘要:果胶气凝胶,密度非常低(约0.1 g cm -3)和高比表面积(高达600 m 2 g -1),是出色的热绝缘材料,因为它们的导热率低于环境条件下的空气(0.025 w m -1 k -1 k -1)。然而,由于其内在亲水性,与水蒸气接触时果胶气凝胶塌陷,失去了超跨性能。在这项工作中,首先制作了果胶气凝胶,并研究了不同过程参数对材料结构和特性的影响。所有纯果胶气凝胶的密度低(0.04-0.11 g cm-1),高比表面积(308–567 m 2 g - 1)和非常低的热电导液(0.015-0.0.023 w m-1 k-1 k-1)。然后,使用不同的反应持续时间(2至24 h),通过甲基三甲氧基硅烷的化学蒸气沉积果胶疏水凝胶。通过在气候腔中进行调节(25℃,80%的相对湿度),记录了疏水性对材料特性的影响,尤其是对热导率的影响。疏水导致与整洁的果胶气凝剂相比,导热率的增加。mTMS沉积16小时有效地在潮湿的环境(接触角115°)和稳定材料特性(0.030 w m -1 k -1)和测试周期为8个月的测试周期中没有波动的材料(0.030 w m -1 k -1),有效地溶出了果胶气凝胶和稳定材料的稳定材料特性。
“相信”,“项目”,“预测”,“估计”,“五月”,“应该”,“预期”,“意志”,“目标”,“潜在”,“继续”,“可能是
Innovate UK。 嗨。 欢迎大家参加电池咖啡的新剧集,重点关注航空航天中的电池。 我是黛布拉·琼斯(Debra Jones),我是Innovate UK Business Connect的化学和工业生物技术团队的一员,我正在与同事Silvia Boschetto一起举办今天的情节。 哦,大家好。 所以,我叫Silvia Boschetto,我在Innovate UK Business Connect的Clean Energy和建造环境团队中照顾电池。 今天很高兴能在电池咖啡馆来这里,我们期待今天的对话。 现在,作为一个快速提醒,电池咖啡是跨部门电池系统创新网络的倡议,这是一个由Innovate UK Business Connect和Faraday电池挑战所资助的社区。 创新网络旨在为电池行业开放新市场,并在电池中促进大量创新,并有助于从广泛的最终用户中脱碳。 谢谢,西尔维亚。 今天,我们很幸运能与三位客人,来自Collins Aerospace的Kate Cooke,Aerostace Technology Institute的Jacqui Castle和QDOT Technology的Jack Nicholas一起加入。 欢迎您,你们每个人都可以简短地介绍自己并解释您目前关于航空电池技术的工作吗? 您好,感谢您的我,我叫凯特·库克(Kate Cooke)。 我是RTX业务一部分Collins Aerospace的能源高级经理。 我总部位于Solihull的Collins设施,在那里我从事电池系统开发。 辉煌,谢谢。 和Jacqui,您要下一个去吗?Innovate UK。嗨。欢迎大家参加电池咖啡的新剧集,重点关注航空航天中的电池。我是黛布拉·琼斯(Debra Jones),我是Innovate UK Business Connect的化学和工业生物技术团队的一员,我正在与同事Silvia Boschetto一起举办今天的情节。哦,大家好。所以,我叫Silvia Boschetto,我在Innovate UK Business Connect的Clean Energy和建造环境团队中照顾电池。今天很高兴能在电池咖啡馆来这里,我们期待今天的对话。现在,作为一个快速提醒,电池咖啡是跨部门电池系统创新网络的倡议,这是一个由Innovate UK Business Connect和Faraday电池挑战所资助的社区。创新网络旨在为电池行业开放新市场,并在电池中促进大量创新,并有助于从广泛的最终用户中脱碳。谢谢,西尔维亚。今天,我们很幸运能与三位客人,来自Collins Aerospace的Kate Cooke,Aerostace Technology Institute的Jacqui Castle和QDOT Technology的Jack Nicholas一起加入。欢迎您,你们每个人都可以简短地介绍自己并解释您目前关于航空电池技术的工作吗?您好,感谢您的我,我叫凯特·库克(Kate Cooke)。我是RTX业务一部分Collins Aerospace的能源高级经理。我总部位于Solihull的Collins设施,在那里我从事电池系统开发。辉煌,谢谢。和Jacqui,您要下一个去吗?在加入柯林斯之前,我在过去的25年中在汽车上工作,因此与航空航天界有着不同的领域,但我很高兴能在这一点上加入航空航天。我以前曾在日产和捷豹路虎(Jaguar Land Rover)工作,在那里我们正在开发用于车辆的电气推进系统,并且随着混合电动和清洁航空的兴起,现在是加入该团队并成为飞机推进架构的一部分的好时机。和这些高电压,不同的系统,这正是我团队在Collins的工作。是的。嗨,大家。我是杰奎琳城堡。我是航空技术学院的CTO。来到这里真的很棒。所以,感谢您的邀请。我负责定义英国航空航天部门技术战略,该战略为发展英国航空航天部门的技术研究提供了路线图,并提供了与净零2050目标相符的更可持续航班。因此,ATI资金计划使英国世界一流的研究和电池是有趣的技术之一。
罗希尼探空火箭经常用于印度空间研究组织以及来自印度和国外的科学家正在开发的新技术的飞行演示。IAD 的作用是使坠入大气层的物体减速。IAD 最初被折叠起来并放在火箭的有效载荷舱内。在大约 84 公里的高度,IAD 充气,并与探空火箭的有效载荷部分一起坠入大气层。IAD 通过气动阻力系统地降低了有效载荷的速度,并遵循了预测的轨迹。