1977 年至 1990 年,Walden 与墨西哥飞艇制造公司 SPACIAL S.A. 的创始人 Mario Sánchez-Roldan 合作,设计和开发了一系列采用透镜状刚性测地线空间框架船体的飞艇。合作成果包括小尺寸 XEM-4 刚性透镜状飞艇演示器和全尺寸 SPACIAL MLA-32-B,后者于 1989 年 6 月首次飞行,成为 50 年来第一艘现代载人刚性飞艇。此次合作还验证了 Walden 的测地线船体设计规范,该规范用于 LTAS 飞艇设计。1997 年,该公司获得了第一批投资者,公司名称更改为 LTAS / CAMBOT LLC,以反映他们开发远程控制高空平台 (HAP)(称为 CAMBOT)的计划。Robert Ellingwood 成为该公司的总裁。2003 年,该公司更名为 LTAS Holdings LLC 和 LTAS International LLC (LTASI)。LTAS Holdings 是 Michael Walden 专利的受让人,并授权使用该知识产权 (IP)。LTASI 是 IP 应用的被许可人。此外,2003 年,一群外国投资者提供资金开发和建造大型 DCB 原型飞艇,最初打算将其作为 30-XB / 技术演示器,并被简单地指定为 TD1,后来被指定为 TD2。Michael Walden 于 2005 年离开 LTAS Holdings 和 LTASI。当时,LTAS 公司计划开发基于 TD2 设计的 New Frontier DCB 飞艇系列。这些公司于
摘要:区域和全球航空旅行的持续增长导致空中和地面交通拥堵加剧。尽管由于经济衰退和灾难事件偶尔会出现暂时的衰退,但自 20 世纪 60 年代以来,所有旅行的平均增长率一直很高。结果:拥堵制约了航空运输业的发展,造成了航班延误并降低了整个系统的效率,迫切需要开发更有效的空中交通管理 (ATM) 方法。新的 ATM 技术、程序、空域自动化方法和决策支持工具正在研究和开发中,以便在从未来几年到 2020 年及以后的时间范围内部署。随着这些方法变得越来越先进和复杂,空中交通管理系统中相关实体之间信息生成、共享和传输的要求也急剧增加。然而,当前的航空通信系统不足以满足这些先进空中交通系统所产生的未来信息传输需求。因此,NASA 格伦研究中心正在开展研究项目,以开发能够满足这些未来要求的通信方法和关键技术。作为这一过程的一部分,研究、研讨会、测试和实验以及研究和分析已经确定了许多研究和技术开发需求。本文的目的是概述在这些活动中确定的关键研究和技术需求,并解释如何确定这些需求。
航空业正面临越来越大的压力,需要通过长期战略来减少排放,以满足不断增长的飞行乘客数量。目前运行的飞机通常是在设计时将机身与推进系统分开考虑的。这样一来,传统的航空发动机架构在推进效率方面已接近极限,而技术进步带来的收益却越来越少。一种有前途的替代架构可以提高下一代商用飞机的整体性能,它依赖于边界层吸入 (BLI)。这项技术将机身与战略性定位的推进系统在空气动力学上耦合,以有目的地吸入机身的边界层流。尽管如此,对于 BLI 效益的解释和量化仍缺乏共识。这主要是因为传统的性能核算方法在强气动耦合的情况下失效。随后,定义适当的性能指标以提供一致测量和潜在效益比较是一项重大挑战。本评论研究了用于评估 BLI 性能的各种会计方法和指标。这些内容在数值和实验模型的背景下进行了讨论和批评。从数值上讲,几何、空气动力学和推进模型按保真度顺序排序,同时使用大量方法进行流动特征识别,从而实现对 BLI 的现象学理解。然后特别关注具有不同设置、方法和相关限制和不确定性的实验 BLI 模型。最后,参考其相关的设计探索和优化研究,对众多非常规 BLI 飞机概念进行了分类、比较和批评。
摘要 数字孪生 (DT) 主要是任何可想象的物理实体的虚拟复制品,是一项具有深远影响的高度变革性技术。无论是产品开发、设计优化、性能改进还是预测性维护,数字孪生都在通过多种多样的业务应用改变各个行业的工作方式。航空航天业(包括其制造基地)是数字孪生的热衷者之一,他们对数字孪生的定制设计、开发和在更广泛的运营和关键功能中的实施表现出前所未有的兴趣。然而,这也带来了一些对数字孪生技术的误解,以及对其最佳实施缺乏了解。例如,将数字孪生等同于智能模型,而忽略数据采集和可视化的基本组成部分,会误导创建者构建数字影子或数字模型,而不是实际的数字孪生。本文揭示了航空航天界和其他领域数字孪生技术的复杂性,以消除影响其在安全关键系统中有效实现的谬误。它包括对数字孪生及其组成元素的全面概述。阐述其特征性的最新组成以及相应的局限性,航空航天领域未来数字孪生的三个维度,第三
Pierce Aerospace 由 Aaron Pierce 介绍 联系方式:info@pierceaerospace.net Pierce Aerospace 支持 ASTM F38 远程 ID 标准,以符合 FAA 规则制定。该标准支持广播(通过 WiFi 或蓝牙)和网络远程 ID 功能。该标准提供了一种适应性方法,用于在整个行业中分发有效的远程 ID 功能,并通过广播和网络选项提供冗余,而对制造商、运营商和服务提供商几乎没有负担。Pierce Aerospace 的重点是构建无人机查询系统 - 产品名称 Flight Portal ID (FPID)。FPID 超出了 ASTM 标准的范围,但它通过标准的操作和弹性直接支持安全性。FPID 的作用是充当商业、国家安全、执法和国防用户的可互操作身份真实性渠道。它支持后端数据服务,包括政府或私人白名单,通过 API 来验证身份。它旨在实现各种商业和国防技术的互操作性。 FPID 的功能与政策决策无关。FPID 是一种双重用途产品,支持国防和商业用户。在 Pierce Aerospace 的 2018 年美国空军 SBIR 中,FPID 被证明适用于防空生态系统。Pierce Aerospace 随后继续与美国陆军合作,并于 2019 年秋季与陆军一起进行早期的 FPID 和 ASTM 标准蓝牙广播开发测试。FPID 充当数字空域实用程序,为政府机构和当局、C-UAS 技术和纯商业运营(包括 UTM)提供可互操作的支持。随着 FPID 和行业互操作规模的扩大,该服务同时支持各种应用程序的身份识别 - 例如独立移动应用程序、UTM 和空域安全技术。这种互操作对于支持大量商业活动和空域安全运营至关重要。通过来自各个利益相关者的数十封支持/整合信函,证明了对 FPID 的积极支持。FPID 提供了一种扩展运营商法规遵从性并在无人机领域提供安全保障的方法。作为一种实用工具,它专为大量飞机和用户而设计。FPID 不是 UTM,不是“前端”应用程序,也不是武器。FPID 确实支持更广泛的空域生态系统、其不同的技术和不同的利益相关者。ASTM F38 远程 ID 标准对于推动行业迈向商业化成功的下一步至关重要,并为相邻或底层技术(如 FPID)提供了一个坚实的基础,可用于解决 NAS 中的安全和身份验证问题。皮尔斯航空航天公司很高兴与政府和业界合作,在 2020 年继续部署 FPID 和 ASTM 远程 ID 标准的早期实例。
参数 尺寸 单位 质量 M 千克,kg 长度 L 米,m 时间 T 秒,s 温度 Ϫ 开尔文,K,摄氏度 速度 L/T 米/秒,m/s 密度 ML –3 千克/米 3 力 ML –1 T –2 牛顿,N = 1 千克·米/秒 2 压力 ML 2 T –2 N/米 2 ,帕斯卡,Pa 能量,功 ML 2 T –3 Nm,= 焦耳,J 功率 ML 2 T –3 J/s,瓦特,W 绝对粘度 ML –1 T –1 Ns/米 2 ,Pa-s 运动粘度 L 2 T –1 米 2 /s 热导率 MLT –3 Ϫ –1 W/mK,W/mo C
摘要。飞机燃气轮机发动机的开发已广泛用于开发高级材料。然而,这种复杂的开发过程是通过减少体重,更高的温度能力和/或降低冷却来证明的,每种都会提高效率。这是高温陶瓷取得了很大进步的地方,陶瓷基质复合材料(CMC)在前景中。CMC分为非氧化物和基于氧化物的CMC。两个家庭的材料类型具有很高的潜力,可以在高温推进应用中使用。典型的基于氧化物的基于氧化物纤维和氧化物基质(OX-OX)。一些最常见的氧化物子类别是氧化铝,绿地,陶瓷和氧化锆陶瓷。这样的基质复合材料例如在燃气轮机发动机和排气喷嘴的燃烧衬里中使用。然而,直到现在,尚未就此类应用的可用基于氧化物的CMC进行彻底的研究。本文着重于评估有关机械和热性能的可用氧化陶瓷基质复合材料的文献调查。
“五月”,“应该”,“预期”,“意志”,“目标”,“潜在”,“继续”,“ IS/可能是/可能”和类似的陈述
社区经理将在为航空航天创新中心(AIH)成员创造热情有效的环境中发挥关键作用。向航空航天创新枢纽副主任报告,社区经理将管理对该空间的访问权限,充当组织的面孔,组织活动,支持科技公司的需求,并确保在会议室和共享空间中进行平稳运营。在启动航空航天创新中心的最初阶段,社区经理将与设计师和承包商紧密合作,以帮助翻新设施以适应AIH的目标。