摘要:新鲜水果和蔬菜是健康饮食的重要组成部分,但由于微生物污染而经常与食源性疾病有关。因此,本文的目的是隔离和鉴定与西红柿(豆lycopersicum),香蕉(Musaspp。),菠菜(Spinacia oleracea)和秋葵(Abelmoschus esculentus)通常在尼日利亚Kwarra State的旧市场上出售,使用标准微生物技术。新鲜农产品的细菌负荷范围为0.7 x -1.8 x,在变质农产品中的3.3 x -7.0 x范围内。在变质的农产品中,总细菌负荷较高,宠坏的香蕉记录7.0×10 cfu/ml,而新鲜的Okra的细菌载荷的最低细菌载荷为0.7×10×10 cfu/ml。形态学和生化分析确定了大肠杆菌,沙门氏菌属。,肺炎克雷伯氏菌,金黄色葡萄球菌,铜绿假单胞菌,枯草芽孢杆菌和肠杆菌的生气器。克雷伯氏菌肺炎是最普遍的物种,发生在66.67%的香蕉样品中,菠菜样品的33.33%和33.33%的番茄样品。这些发现突出了新鲜和变质农产品的严重微生物污染,强调了与食用原始或最少加工的水果和蔬菜相关的潜在健康风险。该研究强调了在处理,存储和销售期间改善卫生实践的需求,以及实施定期的微生物监测,以确保当地市场的食品安全。版权策略:©2024。作者保留了版权和授予Jasem首次出版的权利。(2024)。J. Appl。doi:https://dx.doi.org/10.4314/jasem.v28i12.16许可证:CC-BY-4.0开放访问策略:Jasem发表的所有文章均为开放式访问文章,并且可以免费下载,复制,重新分发,reporstribute,repost,repost,repost,compost,compost,translate,translate和read。只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将本文列为:Abdulrahaman,F。B;穆罕默德(J); Abdulkareem,T。Z。与西红柿,香蕉,菠菜和秋葵相关的致病细菌的隔离和鉴定,通常在尼日利亚夸拉州的旧市场出售。SCI。 环境。 管理。 28(12)4067-4071日期:收到:2024年10月22日;修订:2024年11月20日;接受:2024年12月8日;出版:2024年12月18日关键字:细菌分离株;水果;蔬菜;大肠杆菌;金黄色葡萄球菌水果和蔬菜是健康饮食的基本成分,提供了丰富的养分供应,例如纤维,维生素和维持整体健康至关重要的矿物质(Kaparapu等人,2020年)。 他们的消费与许多健康益处有关,包括急性和慢性病的风险降低,例如心血管疾病,癌症和骨质疏松症(Hodder等,2020)。 全球卫生组织强调了每日水果和蔬菜消费促进幸福感和预防疾病的重要性(Aune ETSCI。环境。管理。28(12)4067-4071日期:收到:2024年10月22日;修订:2024年11月20日;接受:2024年12月8日;出版:2024年12月18日关键字:细菌分离株;水果;蔬菜;大肠杆菌;金黄色葡萄球菌水果和蔬菜是健康饮食的基本成分,提供了丰富的养分供应,例如纤维,维生素和维持整体健康至关重要的矿物质(Kaparapu等人,2020年)。他们的消费与许多健康益处有关,包括急性和慢性病的风险降低,例如心血管疾病,癌症和骨质疏松症(Hodder等,2020)。全球卫生组织强调了每日水果和蔬菜消费促进幸福感和预防疾病的重要性(Aune ET
摘要:本文旨在评估尼日利亚阿夸伊博姆州主要湿地(Nwaniba、Ibaka、Ibeno 和 Itu)的对虾(Macrobrachium vollenhovenii)鱼片中的微生物含量、物种特征和组成。使用标准微生物程序确定对虾鱼片中的微生物含量、物种特征和组成。研究结果显示,总异养细菌计数范围从 Ibeno 样本的 2.10 x 104cfu/g 到 Itu 样本的 7.30 x 104cfu/g。Itu 样本还记录了总异养真菌计数的最高值(3.5 x 104cfu/g)。共分离出 8 种细菌(金黄色葡萄球菌、白色葡萄球菌、产气肠杆菌、蜡状芽孢杆菌、大肠杆菌、藤黄微球菌、弗氏节杆菌和沙门氏菌)和 6 种真菌(热带念珠菌、黑曲霉、黄曲霉、土曲霉、粘毛霉和根霉)。细菌种类藤黄微球菌和弗氏节杆菌的出现频率为 100%,而真菌种类为热带念珠菌。这些湿地地区的虾样本中存在这些致病生物可能意味着对虾消费者的健康构成潜在威胁,尤其是当产品在食用前未煮熟或加工不当时。 DOI:https://dx.doi.org/10.4314/jasem.v27i11.37 开放获取政策:JASEM 发表的所有文章均为由 AJOL 提供支持的 PKP 下的开放获取文章。文章发表后立即在全球范围内提供。无需特殊许可即可重新使用 JASEM 发表的全部或部分文章,包括图版、图表和表格。版权政策:© 2023 作者。本文是一篇开放获取文章,根据知识共享署名 4.0 国际 (CC-BY-4.0) 许可的条款和条件分发。只要引用原始文章,即可重新使用文章的任何部分而无需许可。引用本文为:EFFIONG, M. U; ADEYEMI, AV (2023)。对尼日利亚阿夸伊博姆州主要湿地对虾(Macrobrachium vollenhovenii)鱼片的微生物负荷、物种特征和组成进行评估。 J. Appl. Sci. Environ. Manage. 27 (11) 2643-2649 日期:收到日期:2023 年 9 月 30 日;修订日期:2023 年 10 月 29 日;接受日期:2023 年 11 月 7 日 出版日期:2023 年 11 月 30 日 关键词:湿地、异养细菌计数、真菌计数、Macrobrachium vollenhovenii 世界各地海鲜中毒事件的不断增加凸显了微生物控制在渔业中的重要性。研究表明,微生物风险评估已成为评估食品和水供应安全的新兴工具(Effiong 和 Christopher,2020 年)。据报道,对虾携带可导致海传播疾病的病原体(Iwamoto 等人,2010 年)。据报道,其中一些致病菌(弧菌属、沙门氏菌属、链球菌属和葡萄球菌属)可导致人类出现各种健康问题(Lipp 和 Rose,2011 年)。尽管虾具有健康和营养价值,但它极易腐烂,肠道中可能寄生大量细菌
蛤蜊是带壳的海洋或淡水软体动物,属于双壳纲。它们是无脊椎动物,壳分为两部分,称为瓣。它们是蛋白质和矿物质(尤其是钙)的丰富来源,建议孕妇和蛋白质缺乏症患者食用。它们栖息在淡水水体或流速缓慢的水域底部。淡水是指溶解盐或其他杂质含量低于千分之零点五的水,存在于淡水湖泊、沼泽和一些河流中。水体中垃圾、底物和其他粪便物质的沉积导致水中病原微生物(细菌)的积聚,给包括蛤蜊在内的水生生物带来沉重的负担。水体中细菌的浓度随季节而变化。因此,本研究旨在了解与蛤蜊有关的淡水中存在的细菌和真菌的类型和密度,并确定微生物在淡水生态系统中十个月内对蛤蜊营养价值的影响。用于分析的样品是伊图河的水,标记为样品 A,样品 B 是用于冲洗蛤蜊的水,样品 C 是均质蛤蜊肠,样品 D 是均质蛤蜊体。使用连续稀释和平板法确定微生物负荷。使用不同的标准生化测试对微生物分离物进行表征和鉴定,以确定:菌落形态、革兰氏染色反应、孢子染色、运动性、糖发酵、吲哚、凝固酶和过氧化氢酶的产生。使用官方分析化学协会概述的方法进行物理化学和营养分析,以测试水分含量、灰分含量、粗蛋白、纤维、脂肪和矿物质元素。各项分析结果表明,在十个月的采样期内,四个样品的微生物总数在二月份最高,样品 C 的微生物总数最高,为 1.2 X 105 cfu/mL,其次是样品 D,为 7.0 X 104 cfu / mL,样品 B 的微生物总数为 5.8 X 104 cfu / mL,而样品 A 的微生物总数最低,为 4.4 X 104 cfu / mL。九月份的微生物总数最低,样品 C 的微生物总数为 3.7 X 104 cfu / mL,其次是样品 D,为 2.4 X 104 cfu / mL,样品 B 的微生物总数为 8.0 X 103 cfu / mL,而样品 A 的微生物总数最低,为 4.0 X 103 cfu / mL。淡水样品和蛤蜊中存在的微生物大多是来自粪便的大肠菌群,包括:金黄色葡萄球菌、产气肠杆菌、舌螺旋体、蜡状芽孢杆菌、植物乳杆菌、大肠杆菌、水生黄杆菌和变异微球菌。我们得出结论,旱季的微生物负荷高于雨季,这可能是由于雨季水稀释和流速加快所致。结果还表明,蛤蜊的营养价值随季节和微生物负荷密度而变化。我们建议对捕捞蛤蜊的水进行适当的卫生处理,并在食用前将蛤蜊适当煮熟并去除内脏,尤其是在旱季。
使用的指示:以与标签不一致的方式使用该产品是违反联邦法律的。Bio Clean是一种无磷酸盐的配方,旨在为学校,办公室,酒店,汽车旅馆,自助餐厅,餐馆,杂货店和公寓建筑提供有效的清洁,除臭和消毒。bio Clean按照指示使用时,将配制,以将无生命的,坚硬的,无孔的表面消毒,由不锈钢,铬,瓷器,玻璃,玻璃,乙烯基或塑料在墙壁,地板,水槽顶部,桌子,桌子和椅子上进行消毒。在诸如洗手间之类的较大区域,生物清洁旨在提供一般清洁和消毒。如果在食物接触表面上使用,请用饮用水彻底冲洗这些表面。Bio Clean将通常难以保持新鲜气味的区域除臭,例如垃圾存储区域,空垃圾箱和罐子以及任何其他容易受到微生物引起的气味的区域。清洁/除臭/消毒:要清洁/除臭/无孔表面,请按照以下步骤操作。分配器将自动提供包含1盎司的解决方案。生物清洁至1-2加仑的水。1。卸下帽子。将生物清洁容器倒置在分配器中。2。将水打向分配器。3。将分配器出口管放在插座上(MOP桶,桶,水罐,扳机喷雾器等)并打开分配器。将插座填充到所需的水平,然后关闭。4。卸下分配器出口管。5。用拖把,海绵,触发喷雾器或布应用此溶液,以彻底弄湿所有表面。如果喷涂,请使用粗喷雾剂。允许保持湿10分钟,然后让气干。为每种用途准备新的解决方案。对于严重弄脏的区域,需要一个预算步骤。进行重型清洁,请使用每加仑水2盎司的生物清洁。如果将生物清洁用于直接食物接触表面,例如台面,桌子,电器和/或炉灶,则用饮用水彻底冲洗这些表面。该产品不得在以下食物接触表面上使用:餐具,玻璃器皿和菜肴。BACTERICIDAL ACTIVITY: At the stated disinfection dilution rate, this product exhibits effective disinfectant activity against the organisms Escherichia coli, Klebsiella pneumoniae, Salmonella scholtmuelleri, Salmonella enterica, Brevibacterium ammoniagenes, Enterococus faecalis, Shigella dysenteriae, Staphylococcus金黄色葡萄球菌和肠杆菌,金黄色葡萄球菌,金黄色葡萄球菌,肠球菌耐达多霉素。发霉:为了控制霉菌和霉菌,在纯净的硬孔表面上,请按照规定的稀释率使用生物清洁进行消毒。用布,拖把,海绵或手动泵扳机喷雾器涂抹溶液,确保完全弄湿所有表面。如果喷涂,请使用粗喷雾剂。让空气干燥。为每种用途准备新的解决方案。每周或霉菌生长时重复应用。疗效测试表明,在存在有机土壤的存在下,生物清洁是一种有效的杀菌剂(5%血清)。如果在食物接触表面上使用,请用饮用水彻底冲洗这些表面。*VIRUCIDAL ACTIVITY- BIO CLEAN, when used on environmental, inanimate, hard nonporous surfaces at the disinfectant dilution rate with a contact time of 10 minutes, exhibits effective virucidal activity against HIV-1, Hepatitis B (HBV) Influenza A2, Parainfluenza Type 1 (Sendal), Canine Distemper, Feline Pneumonitis, Vaccicnia Virus, and单纯疱疹1。在1盎司使用时对乙型肝炎有效。每加仑的水(1240 ppm quat)遵循上述消毒方向。在先前被血液/体液弄脏的纯净环境表面/物体上杀死HIV-1和HBV,预计有可能弄脏无生命表面/物体的血液或体液的物体,并且表面/物体可能与人体流体相关的是与人体流动相关的表面/物体可能与人体流体相关的人类免疫,并且可能与人体流体相关联(Hume and typrive and afrip)。 HBV。针对用血/体液弄脏的表面/物体的HIV-1和HBV清洁和净化的特殊说明。个人保护:处理用血液或体液弄脏的物品时,使用一次性乳胶手套,礼服,口罩或眼罩。清洁程序:在应用生物清洁之前,必须从表面和物体中彻底清洁血液和其他体液。接触时间:让表面保持湿10分钟。处置传染性材料:根据当地法规,应对传染性废物处置进行高压灭菌和处置血液和其他体液。
H2S + K/A 可能的生物 变形杆菌、爱德华氏菌、沙门氏菌、弗氏柠檬酸杆菌 你对这些知识了解多少? 2-4 进行并解释吲哚、MR-VP、柠檬酸盐、尿素酶、运动性和蔗糖发酵试验。陈述这些试验的目的和原理,并根据结果识别肠杆菌科的成员。描述细菌和病毒的繁殖和增殖方式。利用无菌技术安全处理微生物。应用各种实验室技术识别微生物的类型。识别主要微生物群的结构特征,比较原核细胞和真核细胞,对比各种微生物群的生理和生物化学。培养基:蔗糖发酵液、胰蛋白胨肉汤、MR-VP 肉汤、柠檬酸盐斜面、尿素斜面、运动琼脂。设备:接种线和接种环、原种培养物(产气克雷伯菌、大肠杆菌、奇异变形杆菌、肺炎克雷伯菌)。试剂:Kovac 试剂、甲基红、Barritt 试剂 A 和 B。肠杆菌科的革兰氏阴性杆菌在临床微生物实验室中很常见。这些细菌通常被称为“肠道菌”,是正常肠道微生物群的一部分。由于它们具有相似的革兰氏染色结果和细胞形态,因此需要进行生化测试以进行识别。编码在细菌基因组中的生化酶为每种菌种形成独特的“指纹”。从历史上看,IMViC 测试用于识别肠道菌。该首字母缩略词代表吲哚、甲基红、Voges-Proskauer 和柠檬酸盐测试。大肠杆菌曾被用作食物和水源中粪便污染的指标。虽然肠杆菌与大肠杆菌相似,但它在土壤和草丛中广泛存在,因此它是一种不太可靠的指标。大肠杆菌、克雷伯氏菌、肠杆菌和变形杆菌通常是正常肠道微生物群的一部分,但在不同情况下会导致疾病。真正的肠道病原体包括沙门氏菌,它因“食物中毒”而导致伤寒和胃肠炎,以及志贺氏菌,它因“食物中毒”而导致细菌性痢疾。市面上有 Enterotube 和 API20E 等商业试剂盒系统可用于识别肠杆菌科。此练习需要微型细菌分析练习小组工作。小组中的每个人都将使用一种彩色点培养物。有四种蔗糖发酵液测试可供选择。1. 获取蔗糖发酵液,其中含有糖和 pH 指示剂。2. 使用便签创建标签,上面写有您的姓名、指定的生物和培养基类型。 3. 从琼脂平板上取少量细菌,加入到每个发酵管中。 4. 培养发酵管直至下一次实验。培养后,观察每个蔗糖发酵管的外观: - 黄色发酵液:阳性(发酵蔗糖) - 红色发酵液:阴性(不发酵蔗糖) 将发酵管丢弃在实验室后面的废弃架中。 尿素酶测试 获取尿素琼脂斜面并贴上您的姓名、指定生物和培养基类型标签。 使用无菌环将细菌添加到整个斜面中。 孵育直到下一次实验课。 孵育后,观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。 吲哚测试 获取胰蛋白胨肉汤并贴上您的姓名、指定生物和培养基类型标签。 使用无菌环向每种培养物中添加少量细菌。 孵育直到下一次实验课。孵育后,向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获得一个 MRVP 肉汤管并贴上标签,写上您的名称、指定生物和培养基类型。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管孵育至下一次实验课,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液管将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的测试结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。尿素酶测试 获取尿素琼脂斜面并贴上您的名称、指定生物和培养基类型标签。用无菌环将细菌添加到整个斜面中。孵育至下次实验课。孵育后,观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼色肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。吲哚测试 获取胰蛋白胨肉汤并贴上您的名称、指定生物和培养基类型标签。用无菌环向每种培养物中添加少量细菌。孵育至下次实验课。孵育后,向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。 MR-VPP 测试 准备一个 MRVP 肉汤管,并在上面贴上您的姓名、指定生物和培养基类型标签。使用无菌环将细菌添加到每个培养物中。孵育至下一次实验。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 孵育接种管直至下一次实验,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:孵育后,使用转移吸量管将接种的肉汤分成两个标记为“MR”和“VP”的管。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样本被丢弃在实验室的废弃架上。检测结果表明:大肠杆菌和奇异变形杆菌运动性呈阳性,而肺炎克雷伯菌和沙门氏菌呈阴性。由于缺乏志贺氏菌,未进行检测。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯菌和大肠杆菌的检测呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他确定了主要组织相容性复合体基因,该基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。 Fc 受体以及 T 细胞和 B 细胞识别抗原和协作产生抗体反应的独特方式都是由 Benacerraf 发现的。尿素酶测试 获取尿素琼脂斜面并贴上您的名称、指定生物和培养基类型标签。用无菌环将细菌添加到整个斜面中。孵育至下次实验课。孵育后,观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼色肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。吲哚测试 获取胰蛋白胨肉汤并贴上您的名称、指定生物和培养基类型标签。用无菌环向每种培养物中添加少量细菌。孵育至下次实验课。孵育后,向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。 MR-VPP 测试 准备一个 MRVP 肉汤管,并在上面贴上您的姓名、指定生物和培养基类型标签。使用无菌环将细菌添加到每个培养物中。孵育至下一次实验。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 孵育接种管直至下一次实验,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:孵育后,使用转移吸量管将接种的肉汤分成两个标记为“MR”和“VP”的管。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样本被丢弃在实验室的废弃架上。检测结果表明:大肠杆菌和奇异变形杆菌运动性呈阳性,而肺炎克雷伯菌和沙门氏菌呈阴性。由于缺乏志贺氏菌,未进行检测。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯菌和大肠杆菌的检测呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他确定了主要组织相容性复合体基因,该基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。 Fc 受体以及 T 细胞和 B 细胞识别抗原和协作产生抗体反应的独特方式都是由 Benacerraf 发现的。观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。吲哚测试 获取胰蛋白胨肉汤并贴上您的名称、指定生物和培养基类型标签。使用无菌环向每种培养物中添加少量细菌。孵育至下一次实验课。孵育后,向每种培养物中添加 10 滴 Kovac 试剂: - 红环:阳性(产生吲哚) - 无红环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获取 MRVP 肉汤管并贴上您的名称、指定生物和培养基类型标签。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。培养后,观察 MRVP 肉汤的外观: - 红环:阳性(通过混合酸途径发酵葡萄糖) - 无红环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管培养至下一个实验环节,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液器将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架中。测试结果表明:大肠杆菌和奇异变形杆菌具有阳性运动能力,而肺炎克雷伯菌和沙门氏菌则呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的尿素酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯菌和大肠杆菌的检测结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他确定了主要组织相容性复合体基因,该基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Benacerraf 发现了 Fc 受体,以及 T 细胞和 B 细胞识别抗原并协作产生抗体反应的独特方式。观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。吲哚测试 获取胰蛋白胨肉汤并贴上您的名称、指定生物和培养基类型标签。使用无菌环向每种培养物中添加少量细菌。孵育至下一次实验课。孵育后,向每种培养物中添加 10 滴 Kovac 试剂: - 红环:阳性(产生吲哚) - 无红环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获取 MRVP 肉汤管并贴上您的名称、指定生物和培养基类型标签。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。培养后,观察 MRVP 肉汤的外观: - 红环:阳性(通过混合酸途径发酵葡萄糖) - 无红环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管培养至下一个实验环节,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液器将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架中。测试结果表明:大肠杆菌和奇异变形杆菌具有阳性运动能力,而肺炎克雷伯菌和沙门氏菌则呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的尿素酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯菌和大肠杆菌的检测结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他确定了主要组织相容性复合体基因,该基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Benacerraf 发现了 Fc 受体,以及 T 细胞和 B 细胞识别抗原并协作产生抗体反应的独特方式。向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获得一个 MRVP 肉汤管并贴上标签,写上您的名称、指定生物和培养基类型。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管孵育至下一次实验课,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液管将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的测试结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获得一个 MRVP 肉汤管并贴上标签,写上您的名称、指定生物和培养基类型。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管孵育至下一次实验课,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液管将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的测试结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液器将接种的肉汤分离到两个标记为“MR”和“VP”的管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,没有测试志贺氏菌。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的检测结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液器将接种的肉汤分离到两个标记为“MR”和“VP”的管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,没有测试志贺氏菌。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的检测结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。
一般数据保护法规(GDPR)已成为一项具有里程碑意义的立法,重塑了数据隐私和网络安全的全球格局。在2018年5月执行,GDPR对全球组织产生了深远的影响,促使对网络安全实践进行了重新评估,以确保遵守严格的数据保护标准。本文对GDPR对网络安全的影响进行了全面综述,并特别强调了美国(美国)和欧洲采用的对比方法和实践。GDPR介绍了一组旨在保护个人的权利和隐私的强大原则,强调需要透明度,问责制和主动措施来保护个人数据。其域外范围将其影响扩大到欧洲边界之外,迫使全球业务遵守其法规。本文探讨了GDPR合规性带来的挑战和机遇,研究了美国和欧洲的组织如何导航不断发展的网络安全景观。在美国,在美国,在整个州的隐私法规都有不同的情况下,GDPR促使讨论有关联邦隐私法的制定。考虑到州和联邦法规之间在塑造网络安全策略中的相互作用,审查研究了美国企业采用的不同方法。相反,欧洲实践反映了对GDPR的积极反应,因为组织已经接受了规定中嵌入的原则以加强网络安全框架。本文调查了欧洲网络安全标准的发展,强调了成功的策略和潜在的改进领域。通过综合大西洋两岸的经验,这项综述有助于更深入地了解GDPR对网络安全的影响。它阐明了数据保护的不断发展的动态,为寻求增强其网络安全弹性的组织提供了见解,面对迅速变化的监管景观。