风洞测试中使用内部力或刺天平来测量施加在空气动力学结构上的总力和力矩。刺天平通过应变计将外部施加的负载的应变转换为电压信号。准确的测量设备在风洞测试中至关重要,本论文关注的是校准这种测量设备,以用于风洞中的微型飞行器。发现校准矩阵将天平的电压输出转换为力和力矩数据。将已知负载施加到弦式天平的不同通道,并使用定制程序读取和后处理负载下天平中应变计产生的电压。然后找到电压和负载之间的关系,并用它来生成校准矩阵。然后将校准矩阵输入到不同的程序中,通过施加已知负载作为参考,并将测量的力与参考进行比较,以测试天平的准确性和分辨率。
摘要 – 风洞升级 Capstone 小组被要求为俄亥俄北方大学校园内的 Aerolab™ 教育风洞设计一个数据采集和控制系统。该项目的目的是提高从风洞获取的数据的准确性。这将减少学生在实验中出现的实验误差。风扇上将增加一个电机控制器。一旦达到所需速度,这将有助于通过减少风速波动来提高数据准确性。更精确的系统还将增加风洞用于新研究的实用性。该系统必须能够测量空气速度、压力、轴向力和法向力以及攻角。使用当前的数据采集方法,所有测量值都会大幅波动。
用于可视化管道流线和喷嘴/扩散器边界层分离的简单教学风洞装置 摘要 风洞测试长期以来一直是许多流体力学和空气动力学入门课程的重要组成部分。使用标准电子或机械平衡硬件可以轻松演示与各种气动形状上的阻力形成相关的粘性和压力阻力的基本物理机制。在小比例模型上对升力、阻力、俯仰力矩和压力分布的实验测量同样在支持此类入门课程中的基本流体力学理论方面发挥着重要作用。了解这些物理特性对于汽车空气动力学设计、最大限度地提高燃油经济性以及教授应用于飞机的空气动力学设计基本原理都非常重要。除了更常见的使用风洞作为研究尾翼安装测试模型的空气动力学的工具之外,风洞作为一个整体还提供了展示流体力学的几个重要原理以及将这些原理应用于工程设计的方法。风洞最近的一个应用是对整个风洞进行压力分布测量,以展示理想的无粘性流体流动行为,以及说明各种机械能源的相对重要性。