气溶胶加重在巴基斯坦旁遮普邦的行政拉合尔司构成了重大挑战,并为持续存在的烟雾问题做出了巨大贡献。自2017年以来,该部门经历了烟雾污染的经常性发作,最著名的是在10月和11月。在本研究中,已经分析了气溶胶光学深度(AOD)与三个计量参数一起分析:温度,湿度和降雨。使用遥感数据和卫星成像在2018年10月和2018年11月,2020年和2022年进行了跟踪。此外,来自汽车排气,行业和残茬燃烧的人为排放数据来自次要来源。最终,该研究在10月和11月将在拉合尔分部进行了复杂的环境图片。结果表明,在此期间,AOD水平不仅升高,而且还受到各种计量变量的影响,例如低温,高相对湿度,缺乏降雨量以及各种人类活动的排放。发现卡车,拖拉机和公共汽车是行业和残茬燃烧的最差贡献者之一。因此,本研究表明多部门计划减轻气溶胶水平并打击烟雾威胁,从而促进拉合尔分部的环境可持续性。包括一套全套建议,分为三类:行业,运输和农业。这些专注于技术,控制系统,处置,激励措施,绿色解决方案等。在各个层面上,承诺,协作和协调绝对至关重要。
摘要在火星大气中检测氯化氢(HCL)是Exomars痕量气轨道(TGO)任务的主要目标之一。使用大气化学套件中红外通道(ACS MIR)发现其发现的季节性独特,并可能与灰尘活动联系起来。本文是一项研究的第2部分,该研究通过比较用TGO与MARS气候声音(MCS)测量的TGO与灰尘和水冰不相处进行比较,研究了HCL和气溶胶之间的联系。在第1部分中,我们显示并比较了HCl,水蒸气,温度,粉尘不透明度和水冰不透明度的季节性演变,整个Mars年34 - 36年(太阳纵向180°–360°)34-36岁。在第2部分中,我们研究了每个数量和臭氧之间垂直分布的定量相关性。我们表明,HCl和水蒸气之间存在很强的正相关,这是由于HCl与水蒸气光解产品反应时HCl的快速光化学生产速率所致。我们还显示出水蒸气和温度之间的正相关性,但无法显示温度与HCl之间的任何相关性。灰尘和水冰的不透明与灰尘和水蒸气之间存在弱相关性,但灰尘和HCL之间的相关性仅相关。我们讨论了可能的来源和下沉,鉴于分布式间隔,HCl和水冰之间的相互作用最有可能。
摘要。大气环境监测卫星 (AEMS),也称为大旗一号或 DQ-1,于 2022 年 4 月发射;其主要有效载荷之一是高光谱分辨率激光雷达 (HSRL) 系统。这个新系统能够精确测量全球气溶胶的光学特性,在云气溶胶激光雷达和红外探路者卫星观测 (CALIPSO) 卫星退役后,可用于地球科学界。开发合适的检索算法并验证检索结果是必要的。本研究展示了一种使用 DQ-1 HSRL 系统的气溶胶光学特性检索算法。该方法检索了气溶胶的线性去极化率、后向散射系数、消光系数和光学深度。为了验证目的,我们将检索到的结果与通过 CALIPSO 获得的结果进行了比较。结果表明,两组数据的曲线高度一致,DQ-1 的信噪比 (SNR) 有所提高。美国国家航空航天局 (NASA) 微脉冲激光雷达网络 (MPLNET) 站的光学特性曲线被选中与 DQ-1 测量值进行验证,相对误差为 25%。2022 年 6 月至 2022 年 12 月期间,使用 DQ-1 卫星和 AErosol RObotic NETwork (AERONET) 进行的气溶胶光学深度测量进行了关联,得出的 R 2 值等于 0.803。我们使用 DQ-1 数据集初步研究了撒哈拉沙尘和南大西洋的输送过程
在许多技术和生物医学应用中,都非常希望能够创建具有在线可定制和局部可控磁性能的磁响应软材料 (MSM)。本文首次使用计算机控制的双材料气溶胶喷射打印 (DMAJP) 技术展示了这一能力。这种方法可以在打印过程中控制磁性纳米粒子 (MNPs) 墨水和光固化聚合物气溶胶之间的成分变化。两种气溶胶的混合比决定了纳米复合材料中的 MNPs 负载,可用于局部控制打印结构的磁性。打印过程采用逐层结构化,结合牺牲层方法,用于构建完全独立的 MSM 结构,该结构将磁活性和非磁活性元素结合在单一工艺多材料打印方法中,无需进一步组装要求。利用该方法,可以直接制造具有复杂形状和可编程功能的小规模多材料软物体,其运动可以通过施加外部磁场来控制。
在温暖云中的抽象气溶胶相互作用(ACI)是历史期间有效辐射强迫(ERF)的不确定性的主要来源,并且通过扩展为推断的气候灵敏度。由于ACI(ERFACI)引起的ERF由云的强迫组成,这是由于云微物理学的变化和对微物理学的云调整。在这里,我们使用CAM6中托管的扰动参数集合(PPE)来检查驱动ERFACI的过程。对PPE的观察性约束会导致云微物理学和巨摩托学对人为气溶胶的响应的重大限制,但仅对Erfaci的限制最小。对PPE中的云和辐射过程的检查揭示了降水效率和辐射性敏感性的相互作用来缓冲Erfaci。
抽象的人为活动驱动了广泛的热带森林砍伐,特别是在东南亚,在2000年至2020年之间,森林总覆盖量的16%。虽然土地表面变化显着影响大气,但它们对对流云的净影响并没有得到很好的约束。在这里,我们使用卫星数据来证明东南亚的长期森林砍伐可牢固地改变云的性质,并提供了第一个观察性证据,即这种响应的幅度取决于大气环境。砍伐森林在白天向更广泛,较浅的云层转移,与潮湿的沿海地区相比,干燥内陆地区的效果得到了扩增。气溶胶仅弱调节云分数响应,但抵消了云顶对砍伐森林的响应,这表明气溶胶间接影响的影响。我们得出结论,森林损失的局部特征并不统一,在评估对云和气候系统的森林砍伐影响时,必须考虑气候学的区域差异。
EarthCARE 的数据将改善天气预报和气候预测。它将使人们更好地了解云和气溶胶在将入射太阳辐射反射回太空和捕获地球表面发射的红外辐射方面所起的作用。它将通过测量云滴、冰晶以及天然和人造气溶胶的垂直分布来实现这一目标。除了直接影响地球的能量平衡外,气溶胶还影响云的生命周期。气溶胶和云之间的相互作用是我们对气候系统理解中最显著的差距之一。因此,对它们进行测量将更准确地观察地球的能量预算。EarthCARE 将运行在与太阳同步的 393 公里极地轨道上,在午后穿越赤道以优化日照条件。
稿件收到日期:2024 年 2 月 21 日;修订日期:2024 年 3 月 21 日;接受日期:2024 年 3 月 23 日。出版日期:2024 年 4 月 1 日;当前版本日期:2024 年 5 月 13 日。这项工作得到了美国国家航空航天局 (NASA) 浮游生物、气溶胶、云、海洋生态系统 (PACE) 项目的支持。(通讯作者:Gerhard Meister。)Gerhard Meister、Joseph J. Knuble、Robert H. Estep Jr.、David Kubalak 和 P. Jeremy Werdell 均就职于 NASA,戈达德太空飞行中心,美国马里兰州格林贝尔特 20771(电子邮件:gerhard.meister@nasa.gov;joseph.j.knuble@ nasa.gov;robert.h.estep@nasa.gov;david.kubalak@nasa.gov;jeremy。werdell@nasa.gov)。Ulrik Gliese 就职于 KBR,美国马里兰州富尔顿 20759(电子邮件:ulrik.b.gliese@nasa.gov)。Robert Bousquet 就职于 Genesis Engineering Solutions Inc.,地址:美国马里兰州兰汉姆 20706(电子邮件:robert.r.bousquet@nasa.gov)。Leland H. Chemerys、Samuel Kitchen-McKinley 和 Jeffrey W. McIntire 就职于 Science Systems and Applications Inc.,地址:美国马里兰州兰汉姆 20706(电子邮件:leland.h.chemerys@nasa.gov;samuel.kitchen@ssaihq.com;jeffrey.mcintire@ssaihq.com)。Hyeungu Choi 就职于 Global Science & Technology Inc.,地址:美国马里兰州格林贝尔特 20707(电子邮件:HChoi@gst.com)。Robert E. Eplee、Shihyan Lee 和 Frederick S. Patt 就职于 Science Applications International Corporation,地址:美国弗吉尼亚州雷斯顿 20190(电子邮件:robert.e.eplee@nasa.gov;shihyan.lee@nasa.gov;frederick.s.patt@nasa.gov)。Eric T. Gorman 就职于 Northrop Grumman,地址:美国马里兰州巴尔的摩 21240(电子邮件:eric.gorman@quantumspace.us)。Charles McClain 已退休,曾就职于 NASA,地址:美国马里兰州格林贝尔特 20771,戈达德太空飞行中心。他现在就职于美国马里兰州塞弗纳帕克 21146(电子邮件:chuckmcclain@verizon.net)。Zakk Rhodes 就职于美国 UT 84341 空间动力学实验室(电子邮件:zakk.rhodes@nasa.gov)。数字对象标识符 10.1109/TGRS.2024.3383812
干气溶胶沉积 (DAD) 是一种新兴的增材制造喷涂工艺,可直接从干粉构建完全致密的纳米结构陶瓷涂层和低轮廓 3D 结构,而无需粘合剂或流体介质。由于 DAD 依靠冲击动能而不是热量进行致密化,因此功能陶瓷可以直接沉积在聚合物以及陶瓷和金属基材上。本演示将介绍我们在定制沉积系统中使用的两种截然不同的陶瓷原料粉末的一些结果:1.钛酸钡钕,一种用于 RF/微波通信的高 K 微波电介质,以及 2.模拟月球风化层,用于原位资源利用 (ISRU) 和太空制造。
摘要。20 多年前,随着 Terra 和 Aqua 卫星的发射,气溶胶遥感经历了一场革命。随着携带新型被动和主动传感器的其他发射,遥感技术继续取得进步。卫星视图能够检索表征气溶胶负荷、基本粒子特性以及某些情况下的气溶胶层高度的参数,从而聚焦地球气溶胶系统。建模界也取得了类似的进展。现在,这些努力已经持续了很长时间,我们可以看到遥感和建模界的发展趋势,这让我们可以推测未来以及 20 年后该界将如何处理气溶胶遥感。我们预计,高光谱和/或偏振测量技术将取代当今的标准多波长辐射计,所有这些都可以从多个角度进行观察。这些技术将由先进的主动传感器支持,这些传感器除了后向散射外,还能够测量气溶胶消光曲线。结果将更深入地了解气溶胶粒子特性。算法将从主要基于物理转变为包含越来越多程度的机器学习方法,但基于物理的技术不会灭绝。不过,将算法应用于单个传感器的做法将会减少。检索算法将包含统一框架中的多个传感器和所有可用的地面测量数据,这些反转产品将直接输入同化系统,成为“半机械人”:一半是观测,一半是模型。20 年后,我们将看到太空真正的民主化,大大小小的国家、私人组织和各种规模的商业实体都将发射太空传感器。随着可用数据和气溶胶产品数量的增加,将会出现大量的坏数据。用户社区将组织起来制定标准,大型国家航天局将通过部署和维护验证地面网络和重点现场实验来带头努力保持质量。在整个过程中,人们对全球气溶胶系统的兴趣仍将很高,该系统如何影响气候、云、降水和动态、空气质量、环境和公共健康、病原体的运输和生态系统的施肥,以及这些过程如何适应不断变化的气候。