免责声明:Acuité 评级不构成对受评实体的审计,不应被视为旨在替代财务顾问或投资者对是否购买、出售或持有任何证券的独立评估的建议或意见。Acuité 给出的评级基于发行人提供的数据和信息,并从其他可靠来源获得。尽管已采取合理措施确保数据和信息真实,但 Acuité 并未就所依赖信息的充分性、准确性或完整性做出任何明示或暗示的陈述或保证。Acuité 对任何错误或遗漏概不负责,并特别声明,对于因使用其评级而产生的任何直接、间接或后果性损失,它不承担任何财务责任。Acuité 给出的评级受到监督,这可能导致在情况需要时对评级进行修订。请访问我们的网站 (www.acuite.in),获取有关 Acuité 评级的任何工具的最新信息。请访问 https://www.acuite.in/faqs.htm 参阅有关信用评级的常见问题。
农杆菌是一种杆状土壤细菌,以其将肿瘤诱导质粒 (Ti 质粒) 片段转移到植物细胞的独特能力而闻名。这种机制已广泛应用于植物基因工程。本综述深入探讨了农杆菌与植物细胞之间复杂的生物相互作用,包括细菌附着、毒力 (Vir) 基因的激活、T 复合物的产生和运输以及 T-DNA 整合到植物染色体中的关键步骤。此外,本综述还研究了农杆菌作为转化工具的工程化,重点研究了 Ti 质粒的修饰以创建二元和共整合载体系统,这大大提高了转化方案的效率和多功能性。本文还重点介绍了农杆菌介导的转化在可食用疫苗生产中的应用。通过详细研究农杆菌介导转化的生物学、技术和实践方面,本综述旨在为优化该技术以用于各种植物生物技术应用提供见解。最终,了解和改进农杆菌介导转化对于推进植物生物技术至关重要。
。CC-BY-NC-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 7 月 26 日发布。;https://doi.org/10.1101/2024.07.25.605222 doi:bioRxiv 预印本
摘要 - 区块链技术破坏包括农业在内的多个行业的潜力在近期引起了人们的重大兴趣。使用以太坊的功能,一个分散的平台,可以开发出DAPP(分散应用),以实现农业链的可追溯性,效率和透明度。我们DAPP的核心组成部分是智能合约。自我执行的智能合约包含嵌入其代码中的明确合同要求。这些合同保存在以太坊网络上,并在满足特定条件的满意下自动生效。通过使用智能合约,非洲供应链DAPP可以自动化和简化许多任务,包括质量控制,付款和解和物流跟踪。索引条款 - 以太坊,DAPP,智能合约,供应链。
图1和图2所示的农业化学物质和主要国家的主要国家和主要国家。1-2(Anon 2017)。 预计农业产业的年增长率(CAGR)为8-10%(Pandey等人 2020)。 这种增长将受到各种因素的助长,例如人口增长,可耕地的下降,对高价值农业用品的需求激增,并增加了工业和政府部门的启动,以促进认识和最新技术的采用。 使用的主要产品是除草剂,杀虫剂,杀真菌剂,生物农药和植物生长调节剂作为农业化学产品,可服务于各种目的,例如杂草控制,病虫管理和增强植物的生长和产量(Gavrilescu等人。 2015)。 这些主要农业生产中这些主要农产品的使用量的细分为1-2(Anon 2017)。预计农业产业的年增长率(CAGR)为8-10%(Pandey等人2020)。这种增长将受到各种因素的助长,例如人口增长,可耕地的下降,对高价值农业用品的需求激增,并增加了工业和政府部门的启动,以促进认识和最新技术的采用。使用的主要产品是除草剂,杀虫剂,杀真菌剂,生物农药和植物生长调节剂作为农业化学产品,可服务于各种目的,例如杂草控制,病虫管理和增强植物的生长和产量(Gavrilescu等人。 2015)。 这些主要农业生产中这些主要农产品的使用量的细分为2015)。这些主要农业生产中这些主要农产品的使用量的细分为
本课程旨在为私营部门和有兴趣学习不同预测框架的基础的研究科学家,考虑到将多个信息(或层)与动植物育种中的应用集成在一起的不同预测框架的基础。该课程将证明在动植物和动物育种计划中预测模型的发展和利用,以及如何在育种管道的不同阶段实施这些模型。本课程的重点是为与会者促进这些实现所基于的不同范式(参数,非参数AI)的基础。参与者将学习建模基因型特质性能的基础,这些基因型通过多种数据类型的整合为有助于的基因型,考虑到不同的方法(参数,非参数/人工智能智能(AI),AI农作物生长等),请考虑多种数据类型的“ omics”。
我们能否找到更有用、发展更灵活的系统?Jouanin 团队(法国国家农业科学研究院)鉴定了一种 shooty Agro 菌株,并在 20 世纪 90 年代利用它进行植物再生
基因组编辑技术:在小麦育种中的应用 Dorina BONEA 克拉约瓦大学,农学院,罗马尼亚多尔日县 Libertatii 街 19 号,电话/传真:+40 251 418 475,电子邮件:dorina.bonea@edu.ucv.ro,dbonea88@gmail.com 通讯作者:dbonea88@gmail.com 摘要 小麦为人类提供食物和营养支持;因此,小麦育种过程对于满足对具有更好农艺性状的品种日益增长的需求非常重要。随着时间的推移,育种者尝试了各种育种技术来改良所需性状,但这些技术已被证明是费时费力的。为了克服这些问题,科学家们开发了新的基因组编辑技术来加速和促进作物改良。本文所使用的方法重点是使用来自 EU-SAGE 平台的数据来处理、分析和提供有关小麦基因组编辑应用的最新信息。迄今为止(2024 年 1 月 20 日),该平台已注册了 43 项 CRISPR/Cas 技术申请、3 项 BE 技术和 1 项 TALEN 技术申请。美国在小麦基因组编辑技术应用方面位居第二,仅次于中国。通过这些应用获得的所有新小麦基因型都不含有外来 DNA,满足多个国家监管部门接受和批准的条件。这些包括对农民和消费者都很重要的特性,从而有助于全球加大对可持续农业发展的努力。关键词:碱基编辑、CRISPR/Cas 系统、谷物产量、品质、TALEN 介绍全球人口的持续增长需要增加粮食产量。由于气候变化和其他压力,确保足够的粮食生产相当困难。小麦(Triticum aestivum L.)是全球约 35% 人口的主食作物,全球产量的三分之二以上用于人类食品,五分之一用于动物饲料 [14]。2021 年小麦种植面积为 2.207 亿公顷,全球产量达到 7.708 亿吨 [12]。据 [41] 称,为确保粮食需求,到 2034 年,小麦产量必须增加 50%。随着时间的推移,植物育种者通过各种技术开发了新品种。最常用的方法是通过传统技术(杂交、选择等)育种,但这些技术成本高昂且需要很多年。生物技术(转基因、基因组编辑等)为实现
1印度尼西亚萨姆巴瓦印尼橡胶研究所,印度尼西亚贝蒂30953; norcayo.andi@yahoo.co.uk(A.N.N.C。); sahuri_agr@ymail.com(S。); andreaakbar12@gmail.com(A.A。); hajarasywadi@gmail.com(H.A.); ardika_risal@yahoo.com(R.A.); dwishinta_sbw@yahoo.com(D.S.A.); fetrina_oktavia@yahoo.com(f.o。)2国际de recherhe agronmique pour pour ledéveloppement,UMR AAP Institute,F-34398法国Montpellier; ying.dong@etu.univ-amu.fr 3 Cirad,Inrae,UMR AP Institute,Institute Agro,Agro,University Montpellier,F-34398蒙特佩利尔,法国4号农业学院,Gadjah Mada University,Bulaksumum,Bulaksumum,Slempan,Slempan,Yoglama 552281; tarino600@ugm.id(T。); taufan.alam@ugm.id(T.A.); persinundiyah@ugm.id(S.S.)5食品作物研究中心,宾,西比诺,印度尼西亚16911年,哥贝诺; yudhistira.nugraha@gmail.com(y.n。); a.hairmansis@gmail.com(A.H.)6 Indonesian Rubber Research Institute,Galang,Deli Serdang,Medan 20585,印度尼西亚; junaidi.sp5@gmail.com 7 UMR Innovation,Cirad,F-34060法国Montpellier; Eric.penot@cirad.fr 8生物技术研究中心,加德贾·马达大学,布拉克苏穆尔,斯莱曼,Yograyara,Yograyara 55281,印度尼西亚; yekti@ugm.id 9获得了印度尼西亚Salatiga 50702印尼橡胶研究所的研究部门; eiconur@gmail.com *通信:pascal.montoro@cirad.fr