REZETS 旨在根据其运行条件进行操作。雷达配备有综合控制系统 (ICS),可自动监控设备,并在飞行过程中和地面处理期间报告有缺陷的元件(单元、模块)。
成功的机载激光雷达测深仪的基本素质是精度、能力和成本效益。在过去的二十五年里,激光、光学、电子和计算机的发展使得构建具有不同用途的可行机载激光雷达系统变得更容易,而且正在构建的数量也在不断增加。然而,由于需求有限,而且仍然很难满足上述三个要求,尤其是第一个要求,目前世界上只有不到十台机载激光雷达测深仪。从系统中获取答案并不难。然而,要获得符合国际精度标准和典型客户操作要求的结果,需要大量的理解和努力。机载测深仪的设计、构造和操作的主要考虑因素必须是数据质量和深度测量精度。物理环境和系统硬件组件都会产生许多必须克服的错误源。这需要周到的硬件和软件系统设计和构建,以及预测、建模和应用适当的校正器。必须建立并遵循质量控制、校准和维护的操作程序。在本文中,我们描述了已开发的大量硬件设计功能、软件算法、偏差校正器、显示器和操作程序,为满足所需精度标准同时保持效率和成本效益的系统提供了基础。上述功能都已纳入美国陆军工程兵团 SHOALS 作战机载激光雷达测深系统。SHOALS 可通过直升机和固定翼飞机进行操作,以满足各种类型的测量要求,例如制图、疏浚、海岸工程、资源管理、建模和侦察。尽管 SHOALS 硬件是十年前设计的,但该设计已被证明是最佳的,经过七年的成功实地操作,涵盖了广泛的赞助商、要求、全球各地的位置和环境条件。SHOALS 飞行后数据处理软件套件提供了高精度、完美运行,并定期升级以提高实用性和效率。事实证明,整个系统设计非常灵活,并且根据客户要求在硬件和软件中添加了许多新特性和功能。在本文中,我们将描述硬件和软件设计理念以及关键的设计考虑因素。我们详细讨论了如何克服大量潜在或已实现的误差源,这些误差源通常存在于机载激光雷达水文系统中,特别是 SHOALS 中。
成功的机载激光雷达测深仪的基本素质是精度、能力和成本效益。在过去的二十五年里,激光、光学、电子和计算机的发展使得构建具有不同用途的可行机载激光雷达系统变得更容易,而且正在构建的数量也在不断增加。然而,由于需求有限,而且仍然很难满足上述三个要求,尤其是第一个要求,目前世界上只有不到十台机载激光雷达测深仪。从系统中获取答案并不难。然而,要获得符合国际精度标准和典型客户操作要求的结果,需要大量的理解和努力。机载测深仪的设计、构造和操作的主要考虑因素必须是数据质量和深度测量精度。物理环境和系统硬件组件都会产生许多必须克服的错误源。这需要周到的硬件和软件系统设计和构建,以及预测、建模和应用适当的校正器。必须建立并遵循质量控制、校准和维护的操作程序。在本文中,我们描述了已开发的大量硬件设计功能、软件算法、偏差校正器、显示器和操作程序,为满足所需精度标准同时保持效率和成本效益的系统提供了基础。上述功能都已纳入美国陆军工程兵团 SHOALS 作战机载激光雷达测深系统。SHOALS 可通过直升机和固定翼飞机进行操作,以满足各种类型的测量要求,例如制图、疏浚、海岸工程、资源管理、建模和侦察。尽管 SHOALS 硬件是十年前设计的,但该设计已被证明是最佳的,经过七年的成功实地操作,涵盖了广泛的赞助商、要求、全球各地的位置和环境条件。SHOALS 飞行后数据处理软件套件提供了高精度、完美运行,并定期升级以提高实用性和效率。事实证明,整个系统设计非常灵活,并且根据客户要求在硬件和软件中添加了许多新特性和功能。在本文中,我们将描述硬件和软件设计理念以及关键的设计考虑因素。我们详细讨论了如何克服大量潜在或已实现的误差源,这些误差源通常存在于机载激光雷达水文系统中,特别是 SHOALS 中。
机载一次性深海温度计 (AXBT) 系统已用于海洋调查八年多 1 ' 2 。在此期间,越来越多的仪器被用于各种科学项目。 AXBT 是根据美国海军设计规范制造的,并从成功赢得竞标的承包商那里大批量采购。在过去八年中,三家制造商向美国海军供应了 AXBT,并由其提供科学项目。虽然这些设备的设计相似,并产生满足相同海军规范的数据输出,但它们都表现出对科学用户而言非常重要的差异。
Marvin Engineering 成立于 1963 年,是 Marvin 集团的旗舰公司,也是备用任务、辅助飞机和角色设备领域的全球领导者。我们支持当前在役和新兴的固定翼平台,包括 A-10、TA/FA-50、F-15、F-16、F/A-18、F-22 和 F-35,以及旋翼应用,例如 UH/MH/SH-60、AH-1、Airbus Tiger 和 AH-64。Marvin Engineering 还提供外挂运载和释放设备,以支持多种遥控/无人驾驶飞机,例如 MQ-1 Predator、MQ-9 Reaper 和 MQ-1C Gray Eagle。支持的地面发射导弹系统包括 MML、SLAMRAAM 和 NASAMS。我们最新的开发工作专注于为第五代及以后的平台提供创新的外挂运载和释放解决方案。
地质调查局局长和航空地球物理学领域的先驱,于 1987 年 8 月 12 日在阿拉斯加凯奇坎附近的一次直升机与飞机相撞中丧生。弗兰克出生于犹他州比克内尔。他获得了犹他大学电气工程理学学士学位 (1950) 和地球物理学理学硕士学位 (1953)。他继续在科罗拉多大学深造,获得了第二个地球物理数学理学硕士学位 (1967) 和电气工程物理学博士学位 (1973)。弗兰克在美国地质调查局的职业生涯长达 35 年,从 1952 年开始从事机载地球物理仪器、数据汇编和解释问题的工作。从 1955 年到 1962 年,他开发了各种可控和自然源电磁技术,应用于众多地质问题。1962 年,美国地质调查局购买了一架 Convair 240 飞机,Frank 参与了航空勘测地球物理仪器的开发、采购和测试。他特别感兴趣的是新的 INPUT 电磁系统和自动磁力仪系统。他积累的经验促成了现在的经典教科书“地球物理勘探中的电气方法”,该书于 1966 年与 George V. Keller 合作出版。1967 年,Frank 发表了第一条计算机生成的分层地球理论电磁测深曲线,成为大多数早期航空电磁解释方法的基础。在同一时期,弗兰克还开发了一个比例模型电磁测试设施,该设施提供了对理解现场观测和测试解释方法至关重要的数据。他的模型结果被国际公认为检查数值结果的标准。他开发了一种机载甚低频 (VLF) 接收器,其中包含一个电场参考,使其能够生成电阻率图
本文介绍了一种用于机载摄像系统几何校准的实验室方法。该装置使用入射激光束,该光束由衍射光学元件 (DOE) 分成具有精确已知传播方向的多个光束。衍射图案的每个点代表无穷远点,并且对平移不变。单个图像足以按照使用针孔相机模型和失真模型的经典相机校准方法进行完整的相机校准。所提出的方法节省时间,因为不需要使用多幅图像的复杂束调整程序。它非常适合与框架相机系统一起使用,但原则上也适用于推扫式扫描仪。为了证明可靠性,将传统的测试场校准与所提出的方法进行了比较,结果显示所有估计的相机参数都略有不同。此外,还进行了 Zeche Zollern 参考目标的试飞。空中三角测量结果表明,使用 DOE 校准机载摄像系统是一种可行的解决方案。
自 20 世纪 90 年代中期非北约潜艇部署几乎停止以来,北约现在拥有一代军官和文职领导人,他们没有在冷战期间的“猫捉老鼠”潜艇战环境中长大。自冷战结束以来,北约进行了三次重大联合行动。这些行动都不是在有敌方潜艇威胁的地区进行的。正如空军首领反对北约在任何战役中始终拥有空中优势的观念一样,海上领导人也必须参与反对北约海上力量始终拥有海上优势的观念。这种看法,加上对俄罗斯联邦海上能力的错误信念,几十年来一直影响着海上国防开支。结果,北约丧失了冷战结束时获得的大部分优势。因此,为了反驳这一流行理论,本研究旨在让更广泛的读者群阅读,而不仅仅是海事部门。
(b)使用 Mie ACCD 探测器(蓝色条)测量的示例性信号分布和通过 FI 传输的信号的 Lorentzian 拟合,用于确定 Mie 条纹质心位置 m。 (c)用瑞利 ACCD 探测器测得的示例性信号分布(绿色条)和通过两个 FPI 传输的信号的高斯拟合(A:粉色,B:橙色)用于确定瑞利点位置 r A 和 r B 。 div>
(U) A.任务描述 为传感器系统的开发提供资金,通过一系列渐进式升级,使国防部机载侦察机队的 SIGINT 能力现代化,以应对 2010 年的威胁。升级将采用开放系统方法,具有公认的标准、通用性、模块化、可扩展性和可重构性。渐进式方法将确保在未来预算年度资金到位时能够使用最新技术。开放式架构将为找到创新方法使用新技术的承包商提供竞争机会。它还将允许最大限度地使用为其他应用开发的商业现货 (COTS) 和政府现货 (GOTS) 功能。目标是到 2010 年完全符合所有 CRD 要求和所有联合机载 SIGINT 架构 (JASA)。为初始 JSAF 模块开发和修改领先的集成飞机 (EP-3E) 将提供一种机制来开始开发和评估 JSAF 组件。将为机载机队(有人和无人)提供可生产的 JSAF 组件,以集成到空军的 RC-135V/W(铆钉接头)、陆军的空中通用传感器 (ACS) 平台、空军的 U-2 和海军的 EP-3E 上。