(星号表示领导者绩效步骤。)评估指导:如果所有绩效步骤都通过,则为士兵评分为 GO。如果任何绩效步骤未通过,则为士兵评分为 NO-GO。在 NO-GO 的情况下,向士兵简要说明缺陷,重新训练士兵正确执行步骤,并重新评估任务。评估准备:在作战环境中,指挥官已责成您为航空旅制定坠机恢复计划 (DARP)。在开始评估之前,请逐字逐句地向士兵宣读所有测试绩效说明。查看执行任务所需的材料。阅读说明后,给士兵一个口头提示开始评估。在士兵执行操作时对其进行评估。在清单上记录士兵的 GO/NO-GO。
摘要。本文介绍了一种新型 TCAS 设计的研究,该设计将低轨道卫星的利用与现有的 TCAS 系统相结合,以提高运营效率并克服挑战。随着空中交通的不断增长,确保安全仍然是重中之重。TCAS 的开发是为了减轻飞机碰撞的风险,并且是大型运输飞机的强制性要求。TCAS 使用信息和数据来确定附近飞机的高度和相对位置。然而,尽管空中交通管制 (ATC) 系统取得了进步,但未配备 TCAS 的飞机仍在空域中运行,这可能会增加空中相撞的风险。此外,现有的 TCAS 系统通常会发出频繁且不必要的警报,尤其是在人口密集的终端区域,从而导致飞行员采取错误行动。提出的解决方案旨在通过其他飞机检测未配备 TCAS 的飞机,无论它们是否配备了 TCAS。因此,目标是优化 TCAS 的效率以降低空中相撞的风险并提高整体航空安全。管理应用程序分布在云端,以节省资源利用,包括处理和空中交通管制相关交换的能源消耗。
a。被用于违反一个人对隐私的合理期望,如果尚未获得逮捕令,没有紧急情况和/或尚无同意。包括一些因素可能会产生对隐私期望的合理期望是:(1)该位置不向公共使用开放; (2)该地点是私人拥有的,该财产中的人有权控制对位置的访问并排除其他位置; (3)该地点是所有者采取正常预防措施维护隐私的位置。一个人对在公共场所或公开访问的地方或正常眼可以看待的地方没有合理的隐私期望。b。在很长一段时间内涉及延长或广泛的跟踪或监视,这揭示了非公开信息而没有获得逮捕令,违反了一个人的第四修正案保护。当一个人可以使用权威或逮捕令进行监视时,无人机或UAS也可以进行监视。
NASA提出了亚音速单尾电动发动机概念(SUSAN),以满足对电气化飞机设计的不断增长的需求,这有可能将CO 2排放量减少50%并限制航空的环境影响。苏珊的推进系统由一台涡轮扇发动机和16个分布式电动推进器组成。它被设计为一种商业运输,可容纳180名乘客有效载荷,载有2,500海里,同时以0.785的马赫和37,000英尺的速度巡航Susan的设计包括多种高级技术,例如具有边界层摄入,分布式电气推进系统的单个AFT发动机,以及几个州立电动电动子系统。本文整合了在单个建模和仿真环境中为苏珊开发的各种技术和方法。Susan是使用密歇根大学开发的未来飞机尺寸工具(快速)建模的。使用飞机规格和从文献中收集的设计任务概况,快速评估Susan及其集成技术的系统级别的可行性和性能。引入了其他推进系统和BLI模型,以将Susan的先进技术纳入其设计中。由此产生的Susan型号的MTOW为189,394 lbm,OEW为117,460 lbm,设计任务为30,701 lbm的预测块燃料燃烧。Susan模型的高升力比为20.49,鼓励进一步研究这些高级技术如何降低对控制表面尺寸的依赖并提高飞机总体上的效率。快速预测AFT发动机0.4372 lbm/(LBF·HR)的巡航TSFC,其中包括BLI技术的效果。
在英国,空中交通的重组应优先考虑将二氧化碳排放量的减少优先于其他考虑因素。商业空中交通的到来应直接下降到距目的地跑道5英里处的点。在英国领空中不应偏离直飞飞行道路,而下降则不应没有水平飞行,在空降时堆叠或延迟的任何形式。显然,堆叠会产生不必要的二氧化碳以及其他化学和颗粒物污染1,2,但是,由于这些飞机正在使用襟翼和板条在低空处于温暖,高压和浓密的低海拔时在水平飞行中转3,所以它们在低效率下运行4。由于这些原因,堆叠飞机需要使用高功率设置,并且比在巡航高度5上产生更多的二氧化碳,噪声和其他污染物。一架大型堆叠飞机发出的二氧化碳与10个起动器房屋的冬季加热一样多,还有更多的噪音和污染。
设计,开发,制造和地面测试演示了超高搭桥率(UHBR)管道齿轮涡轮增压发动机,包括先进的核心发动机和燃烧技术,高级热力学(可变)循环;与2020年最先进的机构相比,针对SMR飞机的超高效推进系统的杂交技术至少降低了20%。trl 5在项目完成时从地面测试演示中进行的导管齿轮架构系统级别。Horizon-Ju-Clean-Aviation- 2025-03-SMR-02
•基于风险的方法:ARC建议采用基于风险的BVLOS操作框架,其中风险水平将决定运营条件和要求。公共安全机构通常在受控或低风险环境(例如农村或灾难地区)运作,只要管理风险,就可以从更灵活和量身定制的BVLOS运营中受益。•安全管理系统(SMS):ARC建议采用BVLOS无人机操作的公共安全机构实施SMS。该系统将帮助机构识别,评估和减轻安全风险,以确保以安全的方式进行操作。•地理围栏和其他安全特征:建议在公共安全场景中运行BVLOS的无人机结合了高级技术,例如地理围栏,以防止意外的空域入侵并保护敏感地区,例如医院或受限区域。
未来的飞机尺寸工具(FAST)是密歇根大学为早期概念飞机设计开发的基于MATLAB的开源软件。快速通过新颖的推进系统来促进传统和高级飞机配置的设计和分析,从而基于特定要求,所需的技术目标以及系统级别的目标来实现初步尺寸和性能评估。它已被用于NASA的电气化飞机推进和电气化动力总成飞行演示项目,以评估新型飞机概念,包括电气化商用货轮(notionility lockheed Martin LM-100J)和NASA的亚音速单单船尾发动机配置。本文介绍了快速的可视化软件包的开发,从而满足了整个尺寸过程中飞机设计的视觉表示的需求。集成的软件包提供了飞机外模线和推进架构的示意图的可视化。用户可以创建自定义的飞机几何形状或使用快速可用的预设。此外,随着飞机尺寸的过程的进行,可视化软件包会动态更新飞机的形状和尺寸,从而通过使设计师能够在早期设计阶段有效地可视化和完善其飞机概念来快速增强飞机。
本文介绍了军用飞机多点优化架构生成器 (MAGMA) 工具,并将其应用于新型闭环空气循环机热管理系统 (TMS) 的概念设计研究。该研究重点关注具有高功率有效载荷的名义总起飞重量为 10,000 磅的飞行器,利用 MAGMA 基于图论的架构生成功能探索跨多个操作点的 TMS 架构。该工具生成并分析了 10,841 种潜在配置,产生了 23 种满足所有操作约束的架构。结果揭示了几种新型 TMS 架构,它们的表现优于该飞行器的传统设计,展示了 MAGMA 在早期设计阶段的潜力。这项研究展示了自动化设计工具在满足现代高功率密度飞机复杂要求方面的有效性,标志着 TMS 概念设计的重大进步。
本文提出了一种空中交通预测算法,该算法对飞机进行了观察并对其飞机类型进行了分类,估计飞机的意图和加入机场交通模式的方法,并预测飞机的未来轨迹。开发算法,使自动驾驶飞机能够安全地插入非壁炉交通模式,需要解决一些挑战。这些挑战范围从交通检测到传感器融合到自己的船舶轨迹重建。对轨迹重新载体算法至关重要的是有关操作环境中所有交通飞机的未来行为的信息。所提出的交通预测算法通过定期测量交通飞机位置和速度来生成此信息,以按速度类对飞机进行分类,估计飞机将如何接近跑道,并在跑道上构建预测的轨迹,包括未来的位置和速度。提出的算法的预测是任何下游流量测序和自己的SHIP轨迹计划例程的必要输入。使用的算法使用大约300个随机交通轨迹进行基准测试,涵盖了四个车辆重量类别和八种交通输入类型。虽然该算法可以在终端区域处理多个交通车辆,但没有预测交通交通的交互。单独处理每辆交通车辆。