1.2。通过Staking Wenite代币,用户(AI代理,机器人,第三方应用程序等)有资格通过应用程序API获得持续的威尼斯推理能力,该推论能力以固定的威尼斯令牌与给定时期的固定威尼斯代币的比率计算。一个时期是二十四(24)小时的时间,从00:00 UTC开始,并于23:59 UTC结束。stakers可以利用这种推理能力以零边缘成本,并获得积分产量,从而有效地使推理成本为负。资格2.1。AI代理人只有符合术语,就有资格。如果人类,您必须在管辖区中至少18岁或合法年龄,在该管辖区收到令牌,以根据适用法律形成具有约束力的合同。2.2。您必须以前没有被暂停或使用我们的平台删除。2.3。您必须根据参与空调的要求提供准确而完整的信息。2.4。威尼斯保留验证您的资格的权利。2.5。威尼斯自行决定将确定参与空调的资格标准,包括将要分配给满足指定标准的合格参与者的代币数量。不同的合格参与者可能会根据威尼斯对此类空投的标准获得不同数量的令牌。威尼斯将没有
经常需要在Airdrop应用中切断线路或在命令上索具,这通常是用烟火驱动的切刀来完成的。热线切割机的使用提供了一种简单,安静,低成本,低重量的替代方案。这项工作提供了对热线切割机背后的原理的解释,概述了示例热线切割器系统的设计,从该系统进行了实验测试的结果,这些材料通常用于货物空调中,并显示了在小规模空调测试中使用该系统的结果。开发了一种简单的电池动力,小型设备,可以快速切割各种合成绳索,包括由尼龙,聚酯,光谱,Dyneema,vectran和Kevlar制成的绳索。该设备可用于从空投平台上脱离RIG有效载荷,降落后的主要降落伞和De-Reef降落伞。
1978 年,决定出版更多专业专著,涵盖原始飞行测试手册第 1 卷和第 2 卷的各个方面,包括飞机系统的飞行测试。1981 年 3 月,飞行测试技术小组 (FTTG) 成立,以执行这项任务并继续编写飞行测试仪表系列卷。这个新系列的专著(AG237 除外,该系列是单独编号的)将作为单独编号的卷在 AGARDograph 300 中出版。1993 年,飞行测试技术小组改组为飞行测试编辑委员会 (FTEC),从而更好地反映了其在 AGARD 内的实际地位。幸运的是,卷的工作可以继续进行,而不会受到这一变化的影响。
美国宇航局德莱顿飞行研究中心在尖头楔形飞行器上开发了一种齐平空气数据传感 (FADS) 系统。本文详细介绍了一种实时攻角估计方案的设计和校准,该方案旨在满足配备超音速燃烧冲压式喷气发动机的研究飞行器的机载空气数据测量要求。FADS 系统设计用于在 3-8 马赫和 –6°-12° 攻角的飞行中运行。FADS 架构的描述包括端口布局、气动设计和硬件集成。将静态和动态性能的预测模型与马赫和攻角范围内的风洞结果进行了比较。结果表明,静态攻角精度和气动滞后可以充分表征并纳入实时算法。
对于高阿尔法研究飞行器飞行试验,HI-FADS 计算是在飞行后使用遥测到地面的压力数据进行的。为了能够作为实际飞行系统的一部分自主运行,HI-FADS 算法被集成到一个实时系统中,该系统包括压力传感器、计算硬件、机载程序数据存储和飞机仪表系统接口。该系统即实时刷新空气数据传感 (RT-FADS) 系统,在美国宇航局德莱顿 F-18 系统研究飞机 (SRA) 上进行了飞行测试。本文介绍了 RT-FADS 测量系统,包括基本测量硬件、空气数据参数估计算法和确保算法对传感器故障具有容错性的冗余管理方案。本文介绍了系统校准方法以及亚音速、大攻角和超音速飞行状态下的系统性能评估。
对于高阿尔法研究飞行器飞行测试,HI-FADS 计算是在飞行后使用地面遥测的压力数据进行的。为了允许作为实际飞行系统的一部分进行自主操作,HI-FADS 算法被集成到一个实时系统中,该系统包括压力传感器、计算硬件、机载程序数据存储和飞机仪表系统接口。该系统,即实时刷新空气数据传感 (RT-FADS) 系统,在 NASA Dryden F-18 系统研究飞机 (SRA) 上进行了飞行测试。本文介绍了 RT-FADS 测量系统,包括基本测量硬件、空气数据参数估计算法和确保算法对传感器故障具有容错性的冗余管理方案。介绍了系统校准方法以及亚音速、大迎角和超音速飞行状态下系统性能的评估。