2. Pehlivanoglu, V.、Yagiz, B.、Kandil, O. 和 Baysal, O. ,“跨音速机翼吸气和吹气的粒子群优化”,《航空杂志》,第 47 卷,第 6 期,2010 年 11 月/12 月,第 1955-1965 页。 3. Pehlivanoglu, V. 和 Baysal, O. ,“利用模糊逻辑和神经网络增强的振动遗传算法”,《航空科学与技术》,第 14 卷,第 1 期,2010 年 1 月/2 月,第 56-64 页。 4. Pehlivanoglu, V.、Hacioglu, A.、Baysal, O.,“通过振动遗传算法进行自主无人机路径规划”,《航空工程与航天技术杂志》,第 79 卷,第 3 期,2007 年 7 月/8 月,第 250-260 页。 5. Baysal, O. 和 Ghayour, K.,“非结构化网格上具有一般成本函数优化的连续伴随灵敏度”,《AIAA 杂志》,第 39 卷,第 1 期,2001 年,第 48-55 页。 6. Baysal, O.,“气动形状优化:方法和应用”,《SAE 交易:航空航天杂志》,第 108 卷,第 1 节,1999 年,第 794-802 页。
MAE 511 高级动力学及其在航空航天系统中的应用 MAE 534 机电一体化设计 MA501 高级工程与科学数学 I MAE 521 MIMO 系统的线性控制与设计 MAE 535 机电系统设计 MA501 高级工程与科学数学 I MAE 551 翼型理论 MAE 521 MIMO 系统的线性控制与设计 MAE 525 高级飞行器稳定性与控制 MAE 535 机电系统设计 MAE 561 机翼理论 MA 405 或 501* MA 405 线性代数简介 MAE 541 高级固体力学 I MAE 538 智能结构与材料 MAE 539 先进材料 MAE 535 机电系统设计 MAE 546 光子传感器在结构中的应用 MAE 589 特殊主题 - 结构健康监测 MAE 537 力学复合结构 MA 501 工程与科学高级数学 I
目录 目录 iv 图表列表 vi 表格列表 vii 合规矩阵 1 执行摘要 3 第 1 章简介 7 第 2 章详细任务概况 10 第 3 章概念评估和筛选过程 14 第 4 章总体飞机布局和重量分解 19 第 5 章子系统的详细设计 25 5.1 机身 ……………………………………………………………. 25 5.1.1 底部结构 …………………………………………... 25 5.1.2 尾梁 …………………………………………………... 26 5.1.3 内部布局 ……………………………………………… 26 5.2 驱动系统 ……………………………………………………….. 27 5.2.1 发动机配置 ……………………………………….. 27 5.2.2 变速箱配置 ………………………………… 27 5.3 结构集成 …………………………………………………….. 31 5.4 起落架 …………………………………………………………….. 32 5.4.1 配置 ………………………………………………... 32 5.4.2 轮胎尺寸 …………………………………………………… 33 5.4.3 油压尺寸 …………………………………………………… 34 5.5 主旋翼毂设计……………………………………….. 34 5.5.1 旋翼系统 ………………………………………………… 34 5.5.2 翼型选择 ……………………………………………… 35 5.6 斜盘控制系统 …………………………………………. 38 5.7 篮筐设计 ………………………………………………………... 40
对空气动力学设计的几何形状的优化通常依赖大量昂贵的模拟来评估并迭代地改善几何形状。可以通过提供具有接近所需要求的起始几何形状来减少模拟的数量,通常在提升和阻力,空气动力学矩和表面积方面。我们表明,生成模型有可能通过在大量模拟数据集上概括几何形状来提供这种开始的几何形状。,我们利用了在Xfoil模拟上训练的扩散概率模型,以合成以给定的空气动力学特征和约束条件来调节的二维机翼几何形状。用Bernstein多项式将机翼参数化,以确保生成的设计的平滑度。我们表明,这些模型能够为相同的需求和约束生成各种候选设计,从而有效地探索了设计空间,以提供优化过程的多个起点。但是,候选设计的质量取决于数据集中模拟设计的分布。重要的是,该数据集中的几何形状必须满足在扩散模型条件中未使用的其他要求和约束,以确保生成的几何形状是物理的。
图 1-1:RIT 的风洞测试第 3 部分图 1-2:RIT 的闭路风洞图 5 图 2-1:用于测量三维流体动力的实验仪器。 (Sunada 等 [5]) 6 图 2-2:实验研究中使用的天平示意图 [3] 8 图 3-1:风轴参考系 14 图 3-2:体轴参考系 15 图 3-3:升力和阻力天平的装配图 16 图 3-4:用于测量升力的天平配置 17 图 3-5:用于测量阻力的天平配置 17 图 3-6:力矩分析图 - 升力配置 22 图 3-7:阻力天平配置的力矩分析图 23 图 3-8:俯仰和滚转力矩天平的装配图 24 图 3-9:俯仰和滚转力矩天平的测试平台装配图 25 图 3-10:装配式焊条测试平台 26 图 3-11:俯仰力矩天平配置 28 图 3-12:滚动力矩天平配置 28 图3-13: 俯仰力矩分析图 29 图 3-14: 滚转力矩分析图 30 图 4-1: 实验元素图 34 图 4-2: 升力配置 36 图 4-3: 阻力配置 36 图 4-4: 俯仰力矩配置 38 图 4-5: 滚转力矩配置 38 图 4-6: 平板力矩校准图(零速度且无翼型) 40 图 4-7: 平板俯仰力矩数据 40 图 4-8: 俯仰实验测试平台设置 42 图 4-9: LinAir 涡流面板法翼型 44 图 4-10: 二面角和滚转力矩系数 45 图 5-1: 升力和系数的实验值 53 图 5-2: 实验升力数据与已发布数据的比较 55 图 5-3: 实验阻力数据 56 图5-4:实验阻力数据与公布数据的比较 57 图 5-5:实验俯仰力矩数据 58 图 5-6:俯仰力矩实验值和公布值 60 图 5-7:实验数据;滚动力矩 61 图 5-9:滚动力矩系数与分析模型的比较 62 图 7-1:附加质量的平衡设计 68
图 1:NACA 空中数据臂设计,在 UTSI Cessna 210 右翼尖配备流动角叶片。 .............................................. 1 图 2:惯性(东北向下)坐标系。来源:USAF TPS [6]。 .............................................................................. 5 图 3:机身固定坐标系。来源:USAF TPS [6]。 ............................................................................................. 6 图 4:流动角参考系。u、v、w 分别是机身固定参考系上 x、y、z 方向的速度矢量。来源:NASA [9] ......................................................................................................... 8 图 5:X-Z 轴上的攻角、俯仰角和飞行路径角视图。来源:波音航空杂志 [11]。 ... 9 图 6:不同情况下攻角和俯仰角的差异 [12]。 ............................................................................. 9 图 7:由于升力要求,平飞中的攻角会发生变化 [12]。 ................................................................ 9 图 8:估算 Oswald 效率因子的方法。来源:Roskam [15]。 .............................................................. 16 图 9:阻力系数随马赫数变化的典型变化。来源:Kroo [16]。 .............................................................. 18 图 10:烟气风洞试验中机翼上方的上洗流。来源:Babinksy [17]。 ..............................................................
1 助理教授,2,3,4 本科生 1,2,3,4 机械工程系,1,2,3,4 戈达瓦里工程技术学院,Rajamundry-533296,安得拉邦,印度 摘要:遥控的重要性日益增加,这刺激了能够飞行的无人驾驶飞行器 (UAV) 的发展,从小型昆虫大小的无人机到大型传统飞机。这些无人机在农业、监视、环境监测、搜索和救援、航空摄影、基础设施检查和科学研究领域有着广泛的应用。本研究旨在通过使用完全自动化的工作流程提高 0 度攻角 (AOA) 下的升阻比来优化固定翼无人机的气动形状。我们的研究包括遗传算法 (GA),它模仿自然选择的进化过程以在复杂的问题空间中发现最优解,以及 PyFluent,一种强大的计算流体动力学 (CFD) 工具。这项工作分为三个阶段:初始阶段、优化阶段和模拟阶段。最佳翼型配置在 0 度 AOA 时实现 24.8 的升阻比,特别是在 40 m/s 的速度下。索引术语 - 无人机、升阻比、0 度 AOA、遗传算法 (GA)、PyFluent I. 简介
飞行由奥托·利林塔尔 (Otto Lilienthal) 在 1891 年左右完成,飞机的运动仅通过移动飞行员的身体来控制,即重新定位重心,从今天的角度来看,这很难被视为 FCS。奥托·利林塔尔 (Otto Lilienthal) 也首次尝试通过偏转控制面来控制飞机运动 [1]。利林塔尔滑翔机的控制系统显然是作为纯机械组件设计的。例如,副翼控制面是机翼的末端部分,可以向下包裹以改变机翼的翼型和机翼弯曲部分的攻角,从而增加机翼一部分的升力。表面的控制部分通过一组电线连接到由飞行员致动的环上。这种布局随后被所有其他飞机制造商采用并进一步发展。利林塔尔的环变成了一根棍子,控制面与翼身分离以便于移动。然而,机械连接组件的演变并不那么显著。尽管在某种程度上比几根电线和滑轮复杂得多,但驾驶舱控制装置和控制面之间的机械连接如今在所有小型飞机中都很常见。
现代 CFD 技术为风洞升级提供了新的机会。在这里,我们应用 RANS 模型来计算 ONERA Meudon 中心 S3Ch 跨音速风洞回路的流量。通过在风扇位置实施驱动盘以及在沉降室热交换器位置实施总压力和温度损失来设置流量。该方法针对沉降室和测试段中可用的一组简化实验流量数据进行了验证。将结果与标准设计指南一起考虑,以确定对该回路的修改,以提高流动质量。当风洞在不久的将来移至不同位置时,将实施新回路。另一部分工作致力于计算测试段的自适应顶壁和底壁。作为升级当前工具的尝试,该工具使用测试段内流动的线性化势模型,我们考虑了 RANS 方法并定义了一个新的优化过程,以尽量减少壁对目标流动的影响(与自由飞行条件下的流动相比)。新方法应用于跨音速条件下机翼翼型的特殊情况,仅考虑模拟数据时就显示出接近完美的校正。
摘要:风险评估方法在航空领域应用广泛,但尚未被证实可用于飞机发动机部件的目视检查。该领域的复杂性源于缺陷类型的多样性及其在各个拆卸级别上不同的表现形式。设计了一个新的风险框架以包含背景因素。使用 Bowtie 分析确定这些因素为关键性、严重性和可检测性。该框架产生了一个风险指标,描述了缺陷在检查任务期间可能未被发现的程度,并导致不良的安全结果。简化框架提供了一种通过/不通过决策的方法。研究结果表明,缺陷的可检测性高度依赖于叶片的特定视图,并且可以量化风险。涉及材料分离或去除的缺陷(例如划痕、尖端摩擦、刻痕、撕裂、裂纹和断裂)在翼型视图中显示得最好。如果可以提供边缘视图,则涉及材料变形和形状变化的缺陷(例如尖端卷曲、前缘凹痕、弯曲和破损的叶片)的风险较低。这项研究提出,许多风险评估可以归结为三个因素:后果、可能性和辅助因素。后者代表了工业背景,可以包含多个特定于应用的子因素。已经设计出一种方法,包括适当的量表,用于包括