2 背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . 32 2.4 对民用无人机系统融入国家空域系统的关注 . . . . . . . . . . . . . 35 2.4.1 避开其他飞机 . . . . . . . . . . . . . 35 2.4.2 环境问题 . . . . . . . . . . . . . 37 2.5 系统安全评估和故障树分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.6 路径拖曳
有效的飞行计划需要有关各种潜在威胁的信息,例如恶劣天气或空域限制,以及在发生不可预见事件时可用的替代方案。飞行路线上的预期交通情况对于安全结果也至关重要,例如,可以在飞行前装载足够的燃料/能源供应。新兴的城市空中交通 (UAM) 概念引入了动态密度 (DD) 指标,以预测可能导致飞机之间失去分离或运行效率降低的空域拥堵。受传统空中交通管理的动态密度指标研究和双向高速公路类比的启发,我们为一部分空域 (UAM 走廊) 开发了一个动态密度指标,该指标汇总了五个因素的影响:飞机密度、人口稠密集群的密度、人口稠密集群中的平均飞机数量、飞机之间的平均距离以及飞机之间的最小距离。本研究描述了我们的方法、原理、用例和可视化技术,以便有效地向操作员呈现 DD 指标,以便做出明智的决策。我们还提出了一种验证指标的方法。但是,验证仍然是未来工作的一部分。
• 飞机的垂直距离(高度、海拔)以英尺(ft)表示 • 障碍物的高度以米(m)表示 • 导航、空域预留标绘和 ATC 分离的距离以海里(nm)表示 • 较短的距离以米(m)和千米(km)表示(当高度等于或超过 5000 米时) • 质量以千克(kg)和克(g)表示(当质量小于 1kg 时) • 速度以节(kt)表示 o 注意:低于 50kt 的速度也可以米/秒(m/s)表示
L 波段数字航空通信系统 (LDACS) 是未来通信基础设施 (FCI) 中的空对地数据链路技术。LDACS1 是 ICAO 建议进一步研究的两种候选 LDACS 技术之一。在本文中,我们评估了在欧洲范围内部署 LDACS1 系统的可行性。为此,我们考虑了 2020 年的预计数据流量负载以及两倍于 2020 年的流量负载,并执行小区规划以使用 LDACS1 基站为这些流量提供服务。要求是,拟议的小区规划能够完全满足预期的流量需求,并完全覆盖飞行高度 100 以上的欧洲大陆空域。我们提出了一种频率分配方案,其中考虑了距离测量设备 (DME) 地面站的干扰,这些地面站也在 L 波段运行。我们得出的结论是,LDACS1 的欧洲部署很容易实现,可以与当今运营的 DME 站很好地共存,并且仍为未来的流量增长留下了巨大的空间。
完整文档审查和更新。纳入完整 CAP 722 文档系列审查中的缩写和术语,引入第 16 条:模型飞机俱乐部和协会框架内的 UAS 运营,并与 UAS 实施条例 (EU) 2019/947 的新可接受合规方式和指导材料保持一致,该条例保留于《2018 年欧洲联盟(退出)法案》下(并在英国国内法中进行了修订)。
本文旨在定义在非宽松军事环境中运行所需的一系列机载 ISR 系统的特性。本文认为,尽管在将 ISR 集成到非竞争空域方面取得了坚实进展,但这些系统在很大程度上不足以应付未来对手争夺重要区域空域的突发事件。为了帮助扩大 ISR 系统在这些条件下有效运行的选项范围,本文确定了伊拉克和阿富汗的作战因素,这些因素导致了一体化联合 ISR 系统的发展。由此可以看出,为支持这些冲突而部署的平台和传感器力量组合不太可能适合新兴安全环境,这种环境的特点是难以进入,并且无法访问关键基地、港口和通信线路,从而无法进行力量投射。当军队规划人员分析美国武装部队未来可能面临的突发事件时,他们发现为在允许空域内运行而设计的 ISR 网络很快就会失效。
在那里的住户,前提是诺福克和萨福克郡警察皇室和贵宾保护组已提前获悉此类预定降落。 由诺福克和萨福克郡警察皇室和贵宾保护组; 应海事和海岸警卫局服务负责人的邀请,在桑德灵厄姆府邸降落的任何飞机; 为国王直升机飞行服务飞行的任何飞机; 按照以下许可证飞行的任何飞机: 为国家警察航空服务服务的任何飞机; 为直升机紧急医疗服务服务飞行的任何飞机; 每年 12 月 1 日 0001 时开始至 3 月 1 日 0001 时结束期间飞行的任何飞机。 桑德灵厄姆府 R219
为了优化航空航天领域的安全和效率,美国联邦航空管理局于 2021 年在空中交通组织内成立了一个专门的办公室来管理太空运营。太空运营部门从位于弗吉尼亚州沃伦顿的美国联邦航空管理局空中交通控制系统指挥中心的挑战者室监控发射或重返大气层。该团队与所有主要利益相关者建立热线,在飞行过程中近乎实时地跟踪航天器,并在出现异常时协调空域响应。运营目标是让空域保持更长时间的开放,减少关闭的范围和时间,然后在安全允许的范围内尽快重新开放。
通信。联邦航空管理局将从模拟语音和商业服务提供商数据链路通信过渡到集成数字通信能力。第一阶段的数据链路通信将随着新应用的测试而发展。数据链路的实施将减少语音信道拥塞并增加每个甚高频 (VHF) 频率的容量。在第二阶段,联邦航空管理局将开始用数字无线电(下一代空地通信系统 (NEXCOM))取代其模拟空地无线电基础设施。NEXCOM 无线电提供数字语音和数据通信的能力将在第二阶段和第三阶段逐步实现。地地操作和管理通信系统将合并为一个集成的地面数字电信系统。