。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年10月4日。 https://doi.org/10.1101/2023.05.26.542451 doi:Biorxiv Preprint
囊性纤维化 (CF) 是由分布在 CFTR 基因位点约 25 万个碱基对上的多种突变引起的,其中至少有 382 个是致病突变 (CFTR2.org)。尽管现在有多种编辑工具可用于校正单个突变,但可以强烈支持一种更通用的基因插入方法,原则上能够校正几乎所有的 CFTR 突变。如果这种方法能够有效校正气道上皮的相关干细胞,那么它就有可能为肺部提供终身校正。在本文中,我们重点介绍了将基因有效插入气道上皮干细胞的几个要求。此外,我们重点关注转基因构建体和内源性 CFTR 位点的特定特征,这些特征会影响插入的基因序列是否会在气道上皮中产生强大且生理相关的 CFTR 功能水平。最后,我们考虑如何将体外基因插入方法应用于直接体内编辑。
保留所有权利。未经许可就不允许重复使用。永久性。预印本(未经Peer Review认证)是作者/资助者,他已授予Medrxiv的许可证,以在2024年2月28日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2024.02.26.24302674 doi:medrxiv preprint
背景:ICU 中所有使用机械通气的患者都必须对吸气气体进行加湿,可以使用加热加湿器 (HH) 或热湿交换器 (HME)。最近的研究表明,对于 COVID-19 患者,加湿设备的选择可能会对患者的管理产生相关影响。我们报告了 2 个使用 HME 或 HH 的 ICU 的数据。方法:审查了魁北克市 2 个 ICU 中第一波疫情期间需要有创机械通气的 COVID-19 患者的数据。其中一个 ICU 使用了 HME,而另一个 ICU 使用了加热丝 HH。我们比较了呼吸机设置和调整呼吸机设置后第一天的动脉血气。报告了气管插管阻塞 (ETO) 或亚阻塞事件以及限制加湿不足风险的策略。在台架试验中,我们用湿度计测量了不同环境温度下 HH 的湿度,并评估了其与加热板温度的关系。结果:我们报告了 20 名 SARS-Cov-2 阳性受试者的数据,其中 6 名在使用 HME 的 ICU 中,14 名在使用 HH 的 ICU 中。在 HME 组中,尽管每分钟通气量较高(171 vs 145 mL/kg/min 预测体重 [PBW]),但 P aCO 2 较高(48 vs 42 mm Hg)。我们还报告了在使用 HH 的 ICU 中发生了 3 次 ETO。湿度台架研究报告了 HH 的加热板温度与输送湿度之间存在很强的相关性。在采取措施避免湿度不足后,包括监测加热板温度,不再发生 ETO。结论:COVID-19 患者使用的加湿装置的选择对通气效率(增加 CO 2 去除率,减少死腔)和与低湿度相关的并发症(包括在高环境温度下使用加热丝 HH 时可能出现的 ETO)有相关影响。关键词:加热加湿;热湿交换器;死腔;CO 2;COVID-19;气管插管阻塞。[Respir Care 2022;67(2):157–166。© 2022 Daedalus Enterprises]
引言上皮细胞构成了外部环境的障碍,并分泌粘液吸收吸入颗粒和病原体的粘液(1,2)。有缺陷的上皮功能是哮喘的定义特征,气道上皮细胞对病理粘液的产生增加会导致粘液塞限制气流(3,4)并在哮喘发作中积聚(5)。气道杯状细胞从基底细胞中发展起来,专门生产,存储和释放粘蛋白,从而在气道插头中起主要作用。尽管粘液产生在哮喘和其他呼吸系统疾病的病理生理学中的重要性,但目前尚无有效的疗法,这些疗法专门针对气道中的粘液过量产生。哮喘是由气道中的慢性炎症定义的,这会导致支气管高反应性和气流阻塞(6,7)。许多患有哮喘的人表现出2型高(T2高)势型的证据,其特应性和正在进行的T2气道炎症(7)由细胞因子IL-4,IL-5和IL-13介导。IL-4和IL-5分别驱动IgE产生和嗜酸性粒细胞,而IL-13对包括气道上皮细胞在内的结构细胞具有重要影响。il-13通过信号转换器和转录6(STAT6)的激活因子的信号传导,随后的转录因子SAM指向域 - 包含ETS转录因子(SPDEF)(8)的域名(8),而叉子盒A2/A3(FOXA2/FOXA3)(9)的叉子箱平衡的变化是11个cell仪的至关重要的步行群体。该途径优先诱导粘蛋白糖蛋白MUC5AC在体外(12),从而从患有T2-高哮喘的人的气道上皮刷中概括了其优先诱导MUC5AC的MUC5AC(7)。
1基因组编辑实验室,莫斯科,俄罗斯,2科学和教育资源中心,俄罗斯人民大学,莫斯科,俄罗斯友谊大学,俄罗斯,3个细胞技术系,莫斯科,莫斯科,俄罗斯,俄罗斯,俄罗斯4个实验室,莫斯科,俄罗斯,莫斯科,俄罗斯,莫斯科,莫斯科。遗传性遗传学研究中心,俄罗斯,俄罗斯6干细胞遗传学实验室,医学遗传学研究中心,俄罗斯,俄罗斯7科学和临床纤维化局,俄罗斯医学遗传学研究中心,俄罗斯州莫斯科研究中心,俄罗斯研究机构8级研究中心,俄罗斯研究中心,俄罗斯研究中心,俄罗斯研究中心,俄罗斯研究中心研究流行病学和微生物学中心以俄罗斯卫生部的荣誉院士n f gamaleya命名,俄罗斯莫斯科
•肺炎链球菌在全球范围内的鼻咽度占5-70%,是下气道感染的重要前体。•S。肺炎是5岁以下儿童的主要感染原因,是社区获得性细菌性肺炎的最常见原因。•当前的肺炎球菌疫苗靶向多达23种肺炎链球菌的血清型,但是,循环中有100多种血清型,并且在覆盖的血清型中只有60-70%的有效性,这仅提供部分保护。•金黄色葡萄球菌渐近地定居于20-30%的人口的前鼻孔,并与远处感染的风险增加,包括皮肤和软组织感染,心内膜炎,菌血症和肺炎。•目前没有用于金黄色葡萄球菌的疫苗,预防策略仅限于卫生和接触预防。•corynebacterium是气道中的共生细菌,与减少的金黄色葡萄球菌和肺炎链球菌定殖以及促进更稳定的气道微生物组相关。•在这里,我们调查了Corynebacterium菌落化作为针对病原体感染的预防策略的潜力。
SARS-COV-2逃避疫苗和治疗剂的持续进化强调了对具有高遗传障碍的创新疗法的需求。因此,在SARS-COV-2病毒生命周期中识别新的药理学靶标有明显的兴趣。通过无细胞的蛋白质合成和组装筛选鉴定出的小分子PAV-104最近以某种方式针对病毒组装来靶向宿主蛋白质组装机械。在这项研究中,我们研究了PAV-104抑制人类气道上皮细胞中SARS-COV-2复制的能力(AEC)。我们表明,在永生的AEC中,PAV-104抑制了> 99%的SARS-COV-2变体的感染,而在空气界面(ALI)中培养的原代AEC中,代表体内的肺微环境。我们的数据表明,PAV-104抑制SARS-COV-2的产生,而不会影响病毒入口,mRNA转录或蛋白质合成。PAV-104与SARS-COV-2 Nucleocapsid(N)相互作用,并干扰其寡聚化,阻止粒子组装。转录组分析表明,PAV-104逆转了I型干扰素反应的SARS-COV-2诱导以及已知支持冠状病毒复制的核蛋白信号传导途径的成熟。我们的发现表明PAV-104是Covid-19的有前途的治疗候选者,其作用机制与现有的临床管理方法不同。
