晶格是几何对象,可以描述为无限,常规n维网格的相交点集。div> div> lattices隐藏了丰富的组合结构,在过去的两个世纪中,它吸引了伟大的数学家的注意。毫不奇怪,晶格发现了数学和计算机科学领域的许多AP平原,从数字理论和二磷剂近似到组合优化和密码学。对晶格的研究,特别是从计算的角度进行的研究,以两个重大突破为标志:LESTRA,LESTRA和LOV的LLL Lattice降低算法的开发,以及80年代初期的ISZ,以及Ajtai在某些LATTICE中最糟糕的案例和平均硬度硬度问题之间的连接之间的联系,而Ajtai发现了一个90年代的最糟糕的casase和平均硬度。LLL算法在最坏情况下提供的解决方案的质量相对较差,但可以为计算机科学中许多经典问题设计多项式时间解决方案。这些包括在固定数量的变量中求解整数程序,在理由上考虑多项式,基于背包的密码系统,以及为许多其他二磷和密码分析问题找到解决方案。ajtai的发现提出了一种完全不同的方法来在密码学中使用晶格。Ajtai的工作没有将算法解决方案用于计算可处理的晶格近似问题来破坏密码系统,这表明了如何利用计算上棘手的近似晶格问题的存在,以构建不可能破裂的密码系统。也就是说,设计加密函数,这些函数很难破坏,这是解决计算上的硬晶格问题。在复杂性理论中,我们说如果最坏的情况很难,一个问题很难,而在加密术中,只有在平均情况下很难(即除了可忽略不计的
量子信息具有测量本质上是一个破坏性过程的特性。这一特征在互补原理中表现得最为明显,该原理指出互不相容的可观测量不能同时测量。Broadbent 和 Islam (TCC 2020) 最近的研究基于量子力学的这一方面,实现了一种称为认证删除的密码概念。虽然这个了不起的概念使经典验证者能够确信 (私钥) 量子密文已被不受信任的一方删除,但它并没有提供额外的功能层。在这项工作中,我们用完全同态加密 (FHE) 增强了删除证明范式。我们构建了第一个具有认证删除的完全同态加密方案——这是一种交互式协议,它使不受信任的量子服务器能够对加密数据进行计算,并且如果客户端要求,可以同时向客户端证明数据删除。我们的方案具有理想的特性,即删除证书的验证是公开的;这意味着任何人都可以验证删除已经发生。我们的主要技术要素是一个交互式协议,通过该协议,量子证明者可以说服经典验证者,以量子态形式出现的带错误学习 (LWE) 分布中的样本已被删除。作为我们协议的一个应用,我们构建了一个具有认证删除的 Dual-Regev 公钥加密方案,然后将其扩展到相同类型的 (分级) FHE 方案。我们引入了高斯崩溃哈希函数的概念 - Unruh (Eurocrypt 2016) 定义的崩溃哈希函数的一个特例 - 并在假设 Ajtai 哈希函数在存在泄漏的情况下满足某种强高斯崩溃性质的情况下证明了我们方案的安全性。