图。有关外显子和内含子区域的符号DNA序列瞄准了外显子和内含子区域的DNA序列上的分类。在本研究中的设计和方法论,使用基于人工智能的系统进行了DNA序列中的外显子和内含子区域的分析。独创性通常首选用于评估文本数据的聚类方法在DNA序列上使用。这种情况降低了计算成本。的发现是解决生物信息学领域越来越多的数据的解决方案,建立了基于人工智能的结构,可提供低成本。因此,研究与遗传学有关的情况变得更加容易。结论DNA结构上的外显子和内含子区域的准确率为88.88%。宣布道德标准本文的作者宣布,本研究中使用的材料和方法不需要道德委员会许可和/或法律特殊许可。
Analyt(测量尺寸)考试材料(矩阵)调查技术教学/版本(测量)设备/设备CE程序在用于使用的房屋方法中,因为DIN EN ISO 15189 DIN EN EN ISO/IEC 17025
MDBrain | MDProstate 1.1 Akhondi-Asl, A. 和 Warfield. SK (2013)。通过融合概率分割同时估计真实性和性能水平。IEEE 医学影像学报 32,1840-1852。doi:10.1I09/TMI.2013.2266258 1.2 Allay, EE. Fisher. E.. Iones. SE、Hara-Cleaver, G、Lee, LG 和 Rudick, RA (2013)。在多发性硬化症诊所中使用磁共振成像对多发性硬化症疾病活动进行分类的可靠性。JAMA Neurol. 70,338-344。doi:I0.1001/2013.jamaneuroL211 1.3 Battagiini, M.. Rossi, F.» Grove, RA、Stromillo, M. L、Whitcher, B.、Matthews, PM. 等人 (2014)。使用减影图像自动识别多发性硬化症中的大脑新病变。I. Magn. Reson. Imaging 39, 1543-1549。doi: 10.1002/jmri .24293 1.4 Baur, G、Denner, S.、Wiestler, B.、Navab, N. 和 Albarqouni, S. (2021)。用于脑部 MR 图像中无监督异常分割的自动编码器:一项比较研究。Med. Image Anal. 69:101952。doi: 10.1016/j.media.2020.101952 1.5 Bose, M.、Heitz. F.» Armspach, J.-P.» Namer, L, Gounot, D. 和 Rumbach. L (2003)。多模态序列 MR1 中的自动变化检测:应用于多发性硬化症病变演变。NeuroImage 20, 643-656。doi: 10.1016ZS1053-8119(03)00406 3 1.6 Brownlee, WJ, Altmann. DR. Prados, F., Miszkiel, KA. Eshaghi, A., Gandini Wheeler-Kingshott, Q A. 等人 (2019)。复发型多发性硬化症长期结果的早期成像预测因子。Brain 142。2276-2287。doi: !0.1093/brain/awzl56 1.7 Carass, A., Roy, log. A., Cuzzocreo。 J. L、Magrath、E.、Gherman、A. 等 (2017)。纵向多发性硬化症病变分割:资源与挑战。NeuroImage 148,77-102。doi:10.10I6/j.neuroimage20l6.12.064 1.8 Qtek、0.、Abdulkadir、A.、I.ienkamp、SS。Brox、T.» 和 Ronneberger、O. (2016)。“3D U-Net 从稀疏注释中学习密集体积分割。”国际医学图像计算与计算机辅助干预会议 (雅典:Springer),424-432。1.9 Commowick、O.、Istace、A.、Kain、M.» Laurent. B.. Leray, F., Simon, M.. 等人 (2018)。使用数据管理和处理基础架构对多发性硬化症病变分割进行客观评估。Sci. Rep. 8, 1-17。doi: 10.1038/S41598-018-31911-7 1.10 Egger, G, Opfer, R., Wang, C.» Kepp, T.» Sormani, MP。Spies, L, 等人 (2017)。多发性硬化症中的 MR1 FLAIR 病变分割:自动分割是否与手动注释相符?NeuroImage Clin. 13, 264-270。doi: 10.1016/j.nicl.2016.11.020
1 TransGrid-Wallgrove-Battery-Flagship-Report.pdf 2 AEMO指示TNSPS采购服务以解决司法管辖区惯性短缺的问题,包括2018年在南澳大利亚州的Electranet方向,该方向是通过同步电容器的采购来管理的。在2020年为南澳大利亚州迈出了一个单独的方向,该方向规定,需要通过采购“快速响应(FFR)服务”来管理短缺,这必然导致与许多电池储能系统(BESS)资产合同以提供这些服务。该短缺由AEMO在2021年扩大,并延续了FFR合同。在塔斯马尼亚州AEMO宣布2019年的惯性短缺,导致Tasnetworks与Hydrotasmania签署了惯性服务。3项目评估报告摘要草案 - 2025年12月从昆士兰州解决系统强度要求
痴呆症目前仍然是一个全球性的健康问题,全球估计有5520万人患有痴呆症。最常见的痴呆症类型之一是阿尔茨海默病,因为它占痴呆症病例的 60-80%。日惹是印度尼西亚阿尔茨海默病发病率最高的地区。阿尔茨海默病是一种渐进性的神经退行性疾病,由大脑中形成β-淀粉样斑块引起,会破坏神经系统。根据胆碱能理论,斑块的形成是由于酶乙酰胆碱酯酶 (AChE) 的存在。通过药物治疗方法,抑制AChE酶可以改善认知功能并抑制阿尔茨海默病的进展。同时,抗氧化活性也被证明可以预防阿尔茨海默病。沉香叶(Aquilaria malaccensis Lamk.)是一种富含酚类化合物的植物,具有很强的抗氧化活性。然而,并非所有的酚类化合物都能被人体消化,因此需要通过发酵进行简化。研究表明,将沉香茶制成康普茶可以使其中的酚类含量比普通沉香叶茶中的酚类含量高出两倍。然而,沉香叶康普茶作为阿尔茨海默病替代疗法的抗氧化和乙酰胆碱酯酶抑制剂活性尚未被研究过。基于此,本研究旨在通过薄层色谱(TLC)和气相色谱-质谱(GC-MS)分析测试沉香叶茶康普茶的抗氧化活性、乙酰胆碱酯酶抑制剂和植物化学成分。该研究的阶段包括沉香叶的准备、康普茶发酵、感官测试、抗氧化剂测试、乙酰胆碱酯酶抑制测试和植物化学概况(薄层色谱法和气相色谱-质谱法)。本研究结果表明,沉香叶康普茶提取物具有不同的抗氧化活性,抗氧化活性最好的是康普茶发酵7天的乙酸乙酯提取物,IC50值为2.68µg/mL。沉香叶茶的康普茶提取物通过将癸酸乙酯化合物与 4M0E 蛋白结合,在计算机中具有 AChE 抑制活性。沉香叶康普茶乙酸乙酯提取物的植物化学概况表明,薄层色谱试验中存在黄酮类和酚类化合物,而 GC-MS 试验表明,角鲨烯是提取物中检测到的面积百分比最高的化合物。
与2024 PKM实施期末有关,我们认为,PKM资助学生必须将最终报告上传为PKM活动的最终输出,以确保根据计划进行活动并完成财务日志填写,以填写财务日志,以填写对国家预算的资金的使用,以实现资金的责任,以发展学生的创造力。与此相关的是,尚未上传最终报告或尚未完成的附件学生团体可以关注以下事项:
抽象教育是改变知识的一种方式,以便人类能够发展潜力。教育鼓励每个人发展并适应不断变化的时代,例如技术领域的进步。学生的学习成绩是成功管理学习计划的关键指标。学术绩效检测可以帮助研究计划经理监视并对有可能遇到困难的学生采取积极行动。机器学习可以是通过帮助分类和检测学生学术能力来克服这一挑战的解决方案。机器学习技术已被证明非常有效地分析复杂的数据并揭示了人们难以检测的隐藏模式。本研究旨在探索在检测学生学业表现的机器学习算法的实施,尤其是在NIAS大学数学教育研究计划中。随着技术进步,机器学习已被证明在分类数据和检测传统方法无法识别的隐藏模式方面有效。本研究使用支持向量机(SVM)算法根据从学生主要数据中收集的数据集来预测学生的学习成绩。数据集包括各种因素,例如GPA值,出勤,参与和学习资源的使用。在要使用的方法中,将使用调查表收集数据,其中有许多受访者多达193人。已收集的数据将使用SVM处理,以在预测学生的学习成绩中获得结果。分析结果表明,使用的SVM模型的精度为77.59%,在学业表现良好的学生班级中的偏见更加倾向。这项研究的结果有望在开发更有效的学习方法和对三级机构的学术干预的个性化方面做出实际贡献。关键字:机器学习,学业表现和支持向量机
到2020年底,乳腺癌已成为世界上最常见的癌症,有780万妇女在过去的五年中诊断出来(1)。在全球范围内,乳腺癌需要比其他任何恶性肿瘤的妇女生活中的残疾调整年(达利人)。在2020年,乳腺癌在世界大多数国家的发病率和死亡率上排名第一(2)。在孟加拉国,情况是可比的。根据Globocan(全球癌症天文台)2020年的报告,在美国被诊断出13,028例新的乳腺癌病例(19%),其中6,783例屈服于该疾病,使其成为女性中最常见的癌症(3)。诊断时的临床阶段是乳腺癌中最重要的生存预测因子之一。延迟疾病检测的生存率较低(4)。 因此,如果发现该疾病足够早,我们可以最大程度地减少死亡率,因为早期乳腺癌治疗可能是相当有益的。 因此,筛选分子标记物是一种早期发现乳腺癌并治疗疾病的一种方法(5)。 当前,有几种乳腺癌临床诊断的方法。 有些是侵入性的,而另一些则是无创的。 乳房X线摄影是早期发现乳腺癌的最广泛使用的非侵入性技术之一。 然而,由于无法检测到小肿瘤,尤其是在乳房密集的妇女中,其效率和精度一直存在争议(6)。延迟疾病检测的生存率较低(4)。因此,如果发现该疾病足够早,我们可以最大程度地减少死亡率,因为早期乳腺癌治疗可能是相当有益的。因此,筛选分子标记物是一种早期发现乳腺癌并治疗疾病的一种方法(5)。当前,有几种乳腺癌临床诊断的方法。有些是侵入性的,而另一些则是无创的。乳房X线摄影是早期发现乳腺癌的最广泛使用的非侵入性技术之一。然而,由于无法检测到小肿瘤,尤其是在乳房密集的妇女中,其效率和精度一直存在争议(6)。CA 15-3用于评估对侵入性乳腺癌治疗的反应并鉴定疾病复发。因为CA 15-3不是很具体,因此不能用作女性的标准乳腺癌测试(7)。监测转移性阶段4乳腺癌,在极少数情况下,检测患有早期乳腺癌治疗的患者的复发是CA 27.29测试的两种最普遍用途(8)。转移性乳腺癌可以用高水平的CA125表示。由于CA125水平和癌症之间缺乏清晰度,该测试并不能用作筛查工具(9)。癌胚抗原(CEA)测试不是实用的乳腺癌筛查工具;相反,它用于确定癌症的预后,治疗结果和复发。由于其敏感性低和特异性,美国临床肿瘤学会目前建议不要将CEA用于常规的乳腺癌筛查(10)。这表明这些变量在很大程度上用于评估晚期乳腺癌的治疗成功
非酒精性脂肪性肝病 (NAFLD) 是世界上最常见的慢性肝病 (1)。在没有酒精过量使用和其他导致肝脏脂肪变性的原因的情况下,如果脂肪饱和度超过肝脏重量的 5% (2),即可诊断为 NAFLD。NAFLD 可发展为 NASH (非酒精性脂肪性肝炎)、晚期纤维化、肝硬化,并最终发展为肝细胞癌 (3)。全球 NAFLD 的发病率估计为 25%,而美国的 NAFLD 病例数呈上升趋势,从 2015 年的 8300 万增加到 2030 年的 1.01 亿 (4)。NAFLD 主要发生在中东和南美洲 (5)。伊朗 NAFLD 的发病率估计为近 33.9%,伊斯法罕 39.3% 的人口患有此病 (6-8)。此外,由于肥胖症的流行,全世界患 NAFLD 的人口正在增加(9)。NAFLD 可导致原发性胰岛素抵抗,也可能是胰岛素抵抗的结果,因此它与代谢综合征的组成部分密切相关,包括肥胖、胰岛素抵抗、血脂异常和高血压(10)。此外,糖尿病前期个体患糖尿病的风险最高可增加两倍。胰岛素抵抗是糖尿病病理生理的主要因素(11-13),在 NAFLD 和糖尿病之间很常见(14)。动脉粥样硬化是一种持续的炎症过程,导致动脉壁上形成斑块。动脉粥样硬化形成的病理生理是多因素的;尽管如此,所有过程都是由于促炎、内皮床功能障碍和氧化应激相互作用而发生的(15、16)。查阅文献显示,胰岛素抵抗与动脉粥样硬化形成之间存在直接而重要的关联。鉴于此,胰岛素抵抗与血清中促炎因子(如白细胞介素 1 (IL-1)、IL-6 和肿瘤坏死因子 α (TNF- α))以及导致氧化应激的自由氧自由基水平升高有关。此外,在胰岛素抵抗患者中,不适当的血小板聚集和动脉内膜中层钙斑块沉积导致内皮功能障碍已得到充分阐明(17)。理论上,由于在 NAFLD 和糖尿病前期中都可以检测到胰岛素抵抗的痕迹,两者的巧合可能使个体越来越容易患上 CVD。最近对 7 年间 34,000 名患有 NAFLD 和胰岛素抵抗的患者进行的荟萃分析发现,NAFLD 和胰岛素抵抗使 CVD 死亡和发病的风险增加了 65%。事实上,NAFLD 患者最常见的死亡原因是心血管原因(18)。尽管如此,研究 NAFLD 和糖尿病前期对 CVD 发病率影响的研究者数量有限,本回顾性病例对照研究旨在评估这一问题。
– 单一证券的潜力参与有限。– 外币投资受货币波动影响。– 无法保证单一证券分析和主动管理的成功。– 无法保证投资者能够收回投资资本。– 衍生品涉及与流动性、杠杆和信贷波动、非流动性和波动性相关的风险。– 由于市场、行业和发行人相关的变化,投资价格可能出现波动。– 投资中型和小型股公司的流动性可能低于投资大型股公司的流动性。– 货币市场投资与货币市场风险相关,例如利率波动、通胀风险和经济不稳定。– 子基金的投资可能面临可持续性风险。子基金可能面临的可持续性风险可能具有