紫罗兰色磷(VP)因其独特的物理化学特性和光电应用中的潜力而引起了很多关注。尽管VP具有类似于其他2D半导体的范德华(VDW)结构,但在底物上直接合成VP仍然具有挑战性。此外,尚未证明由无转移VP akes组成的光电设备。在此,一种二辅助蒸气相传输技术旨在直接在SIO 2 /Si底物上生长均匀的单晶VP Akes。晶体VP平均的大小比以前的液体脱落样品大的数量级。用VP Akes制造的光电探测器显示出12.5 A W - 1的高响应性,响应/恢复时间为3.82/3.03 ms,暴露于532 nm光线后。此外,光电探测器显示出对高敏化光检测有益的小黑电流(<1 pa)。结果,探测率为1.38×10 13琼斯,与VDW P – N异质结探测器的检测率相当。结果揭示了VP在光电设备中的巨大潜力以及单晶半导体薄膜生长的CVT技术。
我们研究了石墨烯型纤维中磁性边缘具有磁边缘的热电效应。分别采用静态的动态均值轨道理论,我们首先表明磁力出现在曲折边缘,用于库仑相互作用的窗口,随着量的大小增加,磁磁性显着增加。然后,我们在非平衡绿色功能方法的框架中使用Landauer形式主义来计算磁性六边形石墨烯池中的自旋和电荷电流,通过改变连接温度的不同量尺寸。虽然在非磁性封闭式石墨烯中,温度梯度驱动电荷电流,但我们观察到具有磁性锯齿形边缘的六边形石墨烯纤维的显着旋转电流。特别是,我们表明,在六角形的“元”配置中,受到弱库仑相互作用的约束,纯旋转电流只能由温度范围内的温度梯度驱动,这对于设备应用来说是有希望的。发现较大的平流可以产生更大的库仑相互作用的窗口,其中这种自旋电流是由磁性曲折边缘诱导的,并且电流的较大值。
k -1。六角硼硝化硼(H-BN)木制的含量是有望用于下一代电子热管理的热导电材料。这些电绝缘但热导导的H-BN平流可以作为热填料掺入,以将高𝜿赋予聚合物基于聚合物的复合材料。嵌入了几层H-BN(FLH-BN)植物的基于纤维素的复合材料,实现了使用成本效率和可伸缩程序制备的A liby21.7 W m-1 K-1。该值比在嵌入了大量H-BN的复合材料中观察到的值高5倍(BH-BN,𝜿≈4.5w m-1 k-1),表明在H-BN聚合物组合的H 𝜿 𝜿上,FLH-BN的上i上i上的益处。当用作热界面材料(TIM)的糊剂时,与在同一H-BN负载下的BH-BN综合材料相比,在功率密度(H)下,以2.48 W CM-2的功率密度(H)将最高温度(T MAX)降低24.5°C。结果提供了一种有效的方法,可以改善TIMS的基于纤维素的热糊剂的𝜿,并证明了它们在集成电路(ICS)和高功率电子设备中的热量耗散的生存能力。
超导体中的涡旋可以帮助识别出现现象,但是涡流的基本方面(例如它们的熵)仍然很众所周知。在这里,我们通过测量磁耐药性和对超薄纤维(≤2个单位细胞)的磁性抗性和Nernst效应,研究了不足的BI 2 SR 2 CACU 2 CACU 2 O 8+X中的涡旋熵。我们从具有不同掺杂水平的样品上的磁传输测量中提取伦敦穿透深度。它揭示了超级流动相位刚度ρs与超级传导过渡温度t c线性缩放,直至极不足的情况。在相同批次的超薄纤维上,我们通过芯片温度计测量Nern的效果。一起,我们获得了涡旋熵,并发现它用t c或ρs呈指数衰减。我们进一步分析了高斯超导波动框架中t c上方的nernst信号。在二维极限中电气和热电测量的组合提供了对高温超导性的新见解。
六角硼硝化硼(HBN)作为固态,范德华的载体寄主是芯片量子光子光子学的单个光子发射器的宿主。在436 nm处发射的B-中心缺陷特别引人注目,因为它可以通过电子束照射产生。然而,发射极生成机制尚不清楚,该方法的鲁棒性是可变的,并且仅成功地应用于HBN的厚层(≫10 nm)。在这里,它用于原位时间分辨的阴极发光(CL)光谱法来研究B-中心产生的动力学。表明,B中心的产生伴随着在≈305nm处的碳相关发射的淬灭,并且这两个过程都是由HBN晶格中缺陷的电气迁移来限制的。它确定了限制发射极生成方法的效率和可重复性的问题,并使用优化的电子束参数和HBN预处理和后处理处理的组合来解决它们。在HBN液体中达到了B-Center量化的量子,以8 nm的形式阐明了负责电子束在HBN中的电子束重组的机制,并获得了识别b-Center量子量子量子发射机原子结构的识别的洞察力。
透射电子显微镜(TEM)实验已使用Tecnai G2 TF30茎系统进行,将Crcl 3 akes转移到200个网格var网格上。低分辨率和高分辨率(原子)TEM图像是在明亮的ELD条件下获取的。差异模式以差异模式获取。元素分析已在扫描TEM模式下使用EDX光谱法(牛津X-Max检测器)进行,并使用CLI虫 - Lorimer方法对数据进行了定量分析。在室温(RT)的UHV室中,使用扫描隧道显微镜(STM)Omicron VT-STM系统,使用电化学片段的W TIPPARITRECHEM-OMICRON VT-STM系统在UHV腔室中对空气暴露CRCL 3的测量进行了测量。30隧道电流 - 电压(i - V)曲线以恒定电流模式(在偏置电压o e o {2 V时)获取。X射线光发射光谱(XPS)和紫外光发射光谱(UPS)实验
六方氮化硼 (hBN) 已成为一种有前途的超薄单光子发射器 (SPE) 主体,在室温下具有良好的量子特性,使其成为集成量子光子网络的理想元素。在这些应用中使用这些 SPE 的一个主要挑战是它们的量子效率低。最近的研究报告称,在嵌入金属纳米腔内的多层 hBN 薄片中集成一组发射器(例如硼空位缺陷)时,量子效率可提高两个数量级。然而,这些实验尚未扩展到 SPE,主要集中在多光子效应上。在这里,研究了由在超薄 hBN 薄片中创建的 SPE 与等离子体银纳米立方体 (SNC) 耦合组成的混合纳米光子结构的量子单光子特性。作者展示了 SPE 特性 200% 的等离子体增强,表现为 SPE 荧光的强烈增加。这种增强可以通过严格的数值模拟来解释,其中 hBN 薄片与引起等离子体效应的 SNC 直接接触。在室温下使用紧凑的混合纳米光子平台获得的强而快速的单光子发射对于量子光通信和计算中的各种新兴应用非常有用。
抽象发光构成了对金属热载体过程的独特洞察力,包括用于传感和能量应用的等离子纳米结构中的载体过程。然而,金属发光本质上是弱的,其微观起源仍然存在很广泛的争论,并且它的纳米级载体动力学的潜力在很大程度上无法解释。在这里,我们揭示了从薄单晶金质量产生的发光中的量子力学效应。特别是,我们提供了第一个原理模拟支持的实验证据,以证明其光致发光的起源(即,在互面板中令人兴奋时,会从电子/孔重组中产生的辐射发射)。我们的模型使我们能够确定由于量子机械效应而导致的测得的金发光的变化,因为金纤维厚度降低。令人兴奋的是,这种效应在厚度高达40 nm的发光信号中可观察到,这与费米水平附近电子带结构的平面离散性有关。我们通过第一个原理建模来定性地重现观测值,从而确立了在金单晶型中的发光统一描述,并将其广泛的应用作为携带者的探针,以探测本材料中的载体动力学和光 - 摩擦相互作用。我们的研究为在众多材料系统中的热载体和电荷转移动力学的未来探索铺平了道路。
石墨烯是第一种真正的二维材料,[1] 是形成简单六边形晶格的单层碳。剥离的石墨烯薄片表现出了高迁移率和异常量子霍尔效应 (QHE) 等显著的电学特性,引起了人们对其在许多实际应用中的极大兴趣。[2–5] 然而,由于剥离的石墨烯薄片的尺寸限制(通常高达几十微米),石墨的机械剥离无法提供适用于商业晶圆尺寸电子器件或精确电阻计量的石墨烯。当 SiC 衬底在超高真空或惰性气体氛围中以高于 1000°C 的温度退火时,Si 升华后碳会残留在 SiC 表面并重新排列形成石墨烯层。这种外延石墨烯 (EG) 已准备好用于大规模器件制造,无需转移到另一个绝缘基板上。在六边形 SiC 晶片的硅端面 (Si 面) 上生长的石墨烯由于与 SiC 晶体的方位角取向一致,可以形成大域。与在相反 (碳) 面上生长的石墨烯相比,在 Si 面上,EG 还具有更可控的生长动力学。最近,通过优化
石墨烯是第一种真正的二维材料,[1] 是形成简单六边形晶格的单层碳。剥离的石墨烯薄片表现出了高迁移率和异常量子霍尔效应 (QHE) 等显著的电学特性,引起了人们对其在许多实际应用中的极大兴趣。[2–5] 然而,由于剥离的石墨烯薄片的尺寸限制(通常高达几十微米),石墨的机械剥离无法提供适用于商业晶圆尺寸电子器件或精确电阻计量的石墨烯。当 SiC 衬底在超高真空或惰性气体氛围中以高于 1000°C 的温度退火时,Si 升华后碳会残留在 SiC 表面并重新排列形成石墨烯层。这种外延石墨烯 (EG) 已准备好用于大规模器件制造,无需转移到另一个绝缘基板上。在六边形 SiC 晶片的硅端面 (Si 面) 上生长的石墨烯由于与 SiC 晶体的方位角取向一致,可以形成大域。与在相反 (碳) 面上生长的石墨烯相比,在 Si 面上,EG 还具有更可控的生长动力学。最近,通过优化