到2020年底,乳腺癌已成为世界上最常见的癌症,有780万妇女在过去的五年中诊断出来(1)。在全球范围内,乳腺癌需要比其他任何恶性肿瘤的妇女生活中的残疾调整年(达利人)。在2020年,乳腺癌在世界大多数国家的发病率和死亡率上排名第一(2)。在孟加拉国,情况是可比的。根据Globocan(全球癌症天文台)2020年的报告,在美国被诊断出13,028例新的乳腺癌病例(19%),其中6,783例屈服于该疾病,使其成为女性中最常见的癌症(3)。诊断时的临床阶段是乳腺癌中最重要的生存预测因子之一。延迟疾病检测的生存率较低(4)。 因此,如果发现该疾病足够早,我们可以最大程度地减少死亡率,因为早期乳腺癌治疗可能是相当有益的。 因此,筛选分子标记物是一种早期发现乳腺癌并治疗疾病的一种方法(5)。 当前,有几种乳腺癌临床诊断的方法。 有些是侵入性的,而另一些则是无创的。 乳房X线摄影是早期发现乳腺癌的最广泛使用的非侵入性技术之一。 然而,由于无法检测到小肿瘤,尤其是在乳房密集的妇女中,其效率和精度一直存在争议(6)。延迟疾病检测的生存率较低(4)。因此,如果发现该疾病足够早,我们可以最大程度地减少死亡率,因为早期乳腺癌治疗可能是相当有益的。因此,筛选分子标记物是一种早期发现乳腺癌并治疗疾病的一种方法(5)。当前,有几种乳腺癌临床诊断的方法。有些是侵入性的,而另一些则是无创的。乳房X线摄影是早期发现乳腺癌的最广泛使用的非侵入性技术之一。然而,由于无法检测到小肿瘤,尤其是在乳房密集的妇女中,其效率和精度一直存在争议(6)。CA 15-3用于评估对侵入性乳腺癌治疗的反应并鉴定疾病复发。因为CA 15-3不是很具体,因此不能用作女性的标准乳腺癌测试(7)。监测转移性阶段4乳腺癌,在极少数情况下,检测患有早期乳腺癌治疗的患者的复发是CA 27.29测试的两种最普遍用途(8)。转移性乳腺癌可以用高水平的CA125表示。由于CA125水平和癌症之间缺乏清晰度,该测试并不能用作筛查工具(9)。癌胚抗原(CEA)测试不是实用的乳腺癌筛查工具;相反,它用于确定癌症的预后,治疗结果和复发。由于其敏感性低和特异性,美国临床肿瘤学会目前建议不要将CEA用于常规的乳腺癌筛查(10)。这表明这些变量在很大程度上用于评估晚期乳腺癌的治疗成功
摘要 以数据为中心的革命通常庆祝商业分析和人工智能在挖掘公司潜力和成功方面的普及。然而,关于人工智能集成商业分析 (AI-BA) 的意外后果如何影响公司整体竞争优势的研究还很缺乏。在此背景下,本研究旨在确定 AI-BA 不透明度、次优业务决策和感知风险等因素如何导致公司的运营效率低下和竞争劣势。借鉴资源基础观、动态能力观和权变理论,提出的研究模型捕捉了 AI-BA 不透明度对公司风险环境和负面绩效的组成部分和影响。数据来自印度不同规模组织的各个服务部门的 355 名运营、中层和高级经理。结果表明,缺乏治理、数据质量差以及关键员工培训效率低下导致 AI-BA 不透明。随后,它会触发次优业务决策和更高的感知风险,从而导致运营效率低下。研究结果表明,运营效率低下显著导致销售增长为负和员工不满,从而导致公司处于竞争劣势。研究结果还强调了应急计划在法则链中的显著调节作用。