摘要:我们进行了广泛的理论和实验研究,以确定短周期 GaN/AlN 超晶格 (SL) 中 GaN 和 AlN 层之间的界面相互扩散对拉曼光谱的影响。通过从头算和随机元等位移模型框架,模拟了具有尖锐界面和不同界面扩散程度的 SL 的拉曼光谱。通过对 PA MBE 和 MOVPE 生长 SL 的理论计算结果与实验数据的比较,表明与 A 1 (LO) 限制声子相关的能带对界面扩散程度非常敏感。结果获得了 A 1 (LO) 限制声子范围内的拉曼光谱与 SL 中界面质量之间的相关性。这为使用拉曼光谱分析短周期 GaN/AlN SL 的结构特征开辟了新的可能性。
随着对电子设备成本更低、性能更好、尺寸更小、可持续性更强的需求,微机电系统 (MEMS) 换能器成为受益于小型化的主要下一代技术候选之一 [1-3]。压电 MEMS 谐振器具有高品质因数和大机电耦合度,是射频 (RF) 系统中很有前途的产品 [4-8]。压电 MEMS 谐振器的主要材料是氮化铝 (AlN)、压电陶瓷 (PZT)、氧化锌 (ZnO) 和铌酸锂 (LN) [9-13]。近年来,掺杂 AlN 薄膜,尤其是氮化铝钪 (AlScN),因其能提高 d 33 和 d 31 压电系数而备受研究 [14]。基于AlN和AlScN薄膜的压电MEMS谐振器凭借单片集成度高、性能优越等特点,受到越来越多的关注。MEMS谐振器种类繁多,如表面声波(SAW)谐振器[15,16]、薄膜体声波谐振器(FBAR)[17-19]。但SAW器件与CMOS工艺不兼容,FBAR的频率主要取决于压电层厚度,因此很难在一个芯片上实现多个工作频率或宽频率可调性。另一方面,基于AlN和AlScN的轮廓模式谐振器(CMR)与CMOS工艺兼容[20-24]。同时,工作频率和谐振频率与CMOS工艺兼容,而基于CMR的器件的工作频率和谐振频率与CMOS工艺不兼容。
我们根据使用正交测试设计的CFD仿真,研究了ALN生长的高温MOCVD(HT-MOCVD)数值模型的过程参数。据信,高温生长条件有利于提高ALN膜的效率和结晶质量,而HT-MOCVD反应器中的流场与过程参数密切相关,这将影响膜的均匀性。建立了一个独立开发的概念HT-MOCVD反应器,以进行ALN生长以进行CFD模拟。为了系统地和有效地评估参数在生长均匀性上的作用,使用正交测试设计分析了基于CFD模拟的过程参数。The advantages of the range, matrix and variance methods were considered and the results were analyzed comprehensively and the optimal process parameters were obtained as follows, susceptor rotational speed 400 rpm, operating pressure 40 Torr, gas flow rate 50 slm, substrate temperature 1550 K.
功率放大器 (PA) 技术对于国防和商业领域毫米波 (mm-wave) 通信系统的未来至关重要。这些毫米波频率下的大气衰减很高,因此需要能够抵消这种影响的高功率 PA。氮化镓高电子迁移率晶体管 (GaN HEMT) 凭借其宽带隙和高电子速度,已成为在毫米波频率下提供高功率的主要竞争者。为了改进传统的 GaN HEMT 异质结构,我们之前在氮化铝 (AlN) 平台 [1] 上引入了 HEMT,使用 AlN/GaN/AlN 异质结构。二元 AlN 的最大化带隙可防止缓冲器漏电流并增加 HEMT 击穿电压,同时还提供更高的热导率以增强通道温度管理。此外,GaN 增加的极化偏移允许高度缩放的顶部势垒,同时仍能诱导高密度二维电子气 (2DEG)。我们最近展示了 RF AlN/GaN/AlN HEMT 中高达 2 MV/cm 的高击穿电压 [2],以及这些 HEMT 在 6 GHz 下的 RF 功率操作,功率附加效率为 55%,输出功率 ( ) 为 2.8 W/mm [3]。在这项工作中,我们展示了 AlN/GaN/AlN HEMT 的首次毫米波频率操作,显示峰值 PAE = 29%,相关 = 2.5 W/mm 和 = 7 dB 在 30 GHz 下。
锌Blende和Wurtzite阶段:DFT研究B. Ahmed,B。I。Sharma * Assam University Silchar,788011,印度氮化铝(ALN)是宽带III-V组,Aln在三种不同的晶格结构中展出。在这项工作中,我们根据密度函数理论(DFT),以修改的BECKE-JOHNSON通用梯度近似(MBJ-GGGA)作为交换潜力,研究了岩石(RS),Zincblende(Zb)和Wurtzite(WZ)(WZB)和Wurtzite(WZ)(WZB)相的不同结构和电子特性。在本计算中获得的结构晶格参数和能量带隙与可用的实验值一致。结构计算表明,最稳定的相是wurtzite相,亚稳态相是锌蓝的相。发现Rocksalt,Zincblende和Wurtzite相中的Aln带gap分别为6.33 eV,4.7 eV和5.6 eV。在岩石和锌蓝岩相的情况下,带盖是间接的,在wurtzite相的情况下进行了直接。(2020年10月14日收到; 2021年2月2日接受))关键词:晶体结构,结构优化,密度功能理论,能量带隙,状态的密度
近年来,氮化镓 (GaN) 基高电子迁移率晶体管 (HEMT) 因其在降低开关损耗、维持高击穿电压以及保持高温稳定性方面所表现出的卓越性能,其商业化进程不断加快 [1,2]。大尺寸 Si 衬底上 GaN 外延生长技术的进步降低了生产成本。同时,Si 上的 HEMT 器件可以轻松集成到现有的 Si 铸造厂中 [4-6]。上述优势使 GaN 基 HEMT 器件更接近大众市场应用。阻挡层是 HEMT 器件中的关键元件之一,它决定了导电通道的电阻。AlGaN 是最常用的阻挡材料。在 AlGaN / GaN 界面区域形成的二维电子气 (2DEG) 表现出良好的稳定性、低的薄层电阻、高的载流子密度和高的电子迁移率 [7,8]。由于在 AlN / GaN 界面区域形成了更高的 2DEG 密度,AlN 作为阻挡层材料也引起了人们的关注 [9]。据报道,薄层电阻 (Rs) 值低至 128 Ω/sq,2DEG 密度为 3.21 × 10 13 / cm 2 [10]。此外,在 AlN 系统中可以避免合金散射,从而提高 2DEG 霍尔迁移率 [11,12]。已经证明了基于 AlN 阻挡层的 HEMT 器件具有低栅极漏电和高 I on / I off 比 [13]。表 1 总结了最近对具有最佳 Rs 性能的 AlN / GaN 异质结构的研究。然而,由于 AlN 与 GaN 沟道层的晶格失配较大 (2.5%),因此 AlN 的弛豫是一个主要挑战。氮化硅 (SiN x ) 帽层已被用作表面钝化层,以避免/减少 AlN 弛豫 [ 14 ] 。然而,钝化帽层的成分和厚度对抑制弛豫的影响很少被研究。在本文中,我们报告了包含原位生长的 GaN 和/或 SiN x 帽层的 AlN/GaN 异质结构的长期 2DEG 稳定性。
本研究重点关注使用原子层沉积法 (ALD) 获得的 AlN 薄膜中氢杂质引起的结构缺陷。目前,关于 AlN 薄膜本体中氢的存在的研究严重不足。傅里叶变换红外光谱 (FTIR) 是少数几种可以检测轻元素键的方法之一,尤其是氢。众所周知,氢是通过 ALD 方法生长的 AlN 薄膜中常见的污染物,它可能与氮形成不同的键,例如氨基 (-NH2) 或酰亚胺 (-NH) 基团,这会损害所得薄膜的质量。这就是为什么研究氢现象以及寻找合适的方法来消除或至少减少氢的数量很重要。在这项工作中,使用不同的前体、基材和沉积参数制备了几个样品,并使用 FTIR 和其他技术(如 AFM、XPS 和 EDS)进行了表征,以提供 AlN 薄膜的地形、形态和化学成分的比较和全面分析。
摘要。氧化硅基材料(例如石英和二氧化硅)被广泛用于微机电系统(MEMS)。增强其深等离子体蚀刻能力的一种方法是通过使用硬面膜来提高选择性。尽管以前研究了这种方法,但有关在200 mM底物上使用硬面膜来蚀刻基于硅氧化物材料的信息很少。我们提出了使用Al和Aln掩模的无定形氧化硅蚀刻过程开发的结果,并展示了用于蚀刻二氧化硅和石英的结果。在具有两个血浆源的工业反应性离子蚀刻室(RIE)室中比较了三个气体化学(C 4 F 8 /O 2,CF 4和SF 6)及其混合物。已经确定,纯SF 6是最好的蚀刻剂,而ALN比Al更好地提供了较高的选择性和靠近垂直的侧壁角度。建立了无微量蚀刻的一系列蚀刻参数,并使用蚀刻速率为0.32-0.36m/min的工艺在21M-厚的氧化物中创建了高达4:1纵横比的蚀刻结构,并且对(38-49)的Aln Mask的选择性为0.32-0.36m/min。
由于在高频和高功率固态微波电源设备中的巨大潜在应用,基于GAN的高电子迁移式晶体管(HEMTS)在过去的二十年中引起了很多关注,并且在实现市场商业化方面取得了巨大进展。为了进一步提高设备性能,尤其是在高压,高级材料和设备制造过程中,提出了新颖的设备结构和设计的高操作频率和设备可靠性。在提出的方法中,由于其独特的优质材料特性,基于Inaln的晶格匹配的异质结构可能成为下一个下摆的首选。在本文中,结合了III III化合物半导体材料和设备领域的相对研究工作,我们简要综述了基于Inaln基于Inaln的异质结构半导体组合的艺术状态的进展。基于对基于INALN的异质结构的外延生长的分析,我们讨论了提出的脉冲(表面反应增强)金属有机化学蒸气沉积(MOCVD)的优势和成就,用于INALN/GAN异质结构的外交。
3.4 D Ò 2À^ Ó? ‹x I ÖP Ò 2 Ô 去 ¨ ‹Œ Õ{ (3) P ,- DDDDDDDDDDDDDDDDDDDDDD DDDDDDD