Krailling,德国,2024年4月30日 - EOS是添加剂制造(AM)技术,服务和材料的全球领导者,今天宣布将其EOS Aluminum Alsi10mg添加到其负责的产品组合中,并在其firtucycle®(其全球使用的聚合物材料收购计划中降低材料减少材料造成的材料浪费)以及启动。作为世界上最大的AM原始设备制造商(OEM)之一,EOS致力于最大程度地减少制造业的气候影响,而当今的公告则扩大了这一承诺。负责的EOS铝ALSI10MG EOS铝ALSI10MG是其投资组合中最受欢迎的产品之一,现在至少结合了30%的再生原料,与先前的配方相比,可实现25%CO 2 E减少。此外,新配方在加上制造的零件中保持相同的属性,特性和性能,有助于确保现有的EOS ALUMINUM ALSI10MG客户不需要要求应用程序。EOS铝ALSI10mg的规格保持不变:•化学成分标准:ALSI10MG•最终的拉伸强度:460 MPa•屈服强度:245 MPA•休息时伸长率•延长时•良好的热量和电导率良好和电导性,并具有适应性的材料,包括我们的繁殖材料,包括我们的企业的承诺,包括我们的产品,包括我们的金属生产,包括我们的金属生产,成长为我们的材料,成长,成长为我们的成果,不断增长,不断增长,成长为我们的材料,不断增长。 EOS。“我们正在努力为我们的优质金属材料创造碳足迹透明度virtucycle®采用二手聚合物材料和组件,使用100%可持续产生的能量将AM粉末转化为回收的高 -这些外部验证的数字还通过在我们的碳计算器中加入这些材料,为客户和EOS提供可持续性计划,从而为我们的客户提供透明度。” virtucycle®使用的聚合物材料收购程序现在可用EOS与Arkema公司Agiplast合作,以提供其新的Virtucycle®计划
研究了直接能量沉积制备的 AlSi10Mg 合金的断裂和拉伸行为。在室温下沿不同裂纹平面方向和载荷方向测试了三点弯曲断裂韧性和拉伸试样。在进行机械加工和测试之前,打印样品在 300 ◦ C 下进行 2 小时的热处理以释放残余应力。进行了微观结构和断口图分析,以研究每种裂纹取向的断裂机制和裂纹扩展路径。在裂纹平面方向上观察到断裂韧性的显著差异。裂纹取向在 XY 方向的试样具有最高的断裂韧性值( J Ic = 11.96 kJ / m 2 ),而 ZY 裂纹取向(垂直于打印方向)具有最低的断裂韧性值( J Ic = 8.91 kJ / m 2 )。断裂韧性的各向异性主要与沿熔池边界的优先裂纹扩展路径有关。在熔池边界处,孔隙优先出现,微观结构变粗,且 Si 含量较高,导致该区域的延展性较差,且抵抗裂纹扩展的能力较差。
在压缩负载下研究了基于陶瓷泡沫和ALSI10MG轻质铝合金的互穿金属陶瓷复合材料。陶瓷预成型是通过机械搅拌,干燥和最终烧结而产生的。它的相对密度约为25%,并通过铝合金通过气压浸润渗透。压缩负荷期间的损伤过程以及对裂纹发育的理解是这项研究的重点,并通过补充2D和3D表征方法获得。因此,使用通用测试机,数字图像相关性和显微镜设置的2D表面原位研究设置。进行3D研究,开发并进行了具有原位X射线计算机断层扫描的压缩测试,以了解材料裂纹的生长和裂纹的传播,以及其互穿金属 - 陶瓷复合材料内的失效机制。材料在平行于载荷方向的陶瓷相中显示裂纹起始。随后裂纹簇的形成随后发生了故障机理的变化,这是由于剪切应力支配的失败,其宏观裂纹在45°方向上的宏观裂缝在载荷方向上发生了变化。可以确定复合材料的良好失败。2D和3D调查方法的组合可以深入了解互穿复合材料的失败行为,从而有助于理解超出当前知识状态的失败机制。
a 帕多瓦大学工程与管理系,Stradella San Nicola 3, 36100 Vicenza(意大利) b 挪威科技大学工程设计与材料系,Richard Birkelands vei 2b, 7491, Trondheim(挪威) * 通讯作者:paolo.ferro@unipd.it 摘要
1武汉大学,武汉大学,武湖路,武汉区,武汉区430072,中国; zhou_jiantao@whu.edu.cn(J.Z.); leo_han@whu.edu.cn(X.H.); shen_shengnan@whu.edu.cn(S.S。); zhang_dongqi@whu.edu.cn(d.z。)2 2,纽膨恩大学,纽汉南路,南汉区,深圳市518057工程大学,巴基亚区的长大路(Changle East Road),西安710038,中国; dr_zhouxin@126.com *通信:li_hui@whu.edu.cn(H.L. ); shengliu@whu.edu.cn(s.l. );电话。 : +86-027-68770273(H.L. ); +86-138-7125-1668(S.L.)2,纽膨恩大学,纽汉南路,南汉区,深圳市518057工程大学,巴基亚区的长大路(Changle East Road),西安710038,中国; dr_zhouxin@126.com *通信:li_hui@whu.edu.cn(H.L.); shengliu@whu.edu.cn(s.l.);电话。: +86-027-68770273(H.L.); +86-138-7125-1668(S.L.)
本文提供的信息和数据是典型值或平均值,并不保证最大值或最小值。本文所述材料的具体应用仅用于说明目的,以便读者自行评估,并不作为对这些或其他用途的适用性的明示或暗示保证。本文不保证本文献的接收者在更新版本发布后会收到更新版本。
及其复合材料在高湿度应用条件下仍然面临着磷水解的挑战。了解硅与 CaAlSiN 3 :Eu 2+ 之间的界面黏附力对于该材料的开发和应用具有重要意义。在本文中,首先通过实验测量和比较了硅/原始 CaAlSiN 3 :Eu 2+和硅/水解 CaAlSiN 3 :Eu 2+复合材料的力学性能,其中水解反应后复合材料的拉伸强度和杨氏模量都有所增加。然后,采用第一性原理密度泛函理论 (DFT) 计算在原子水平上研究硅分子在原始和水解 CaAlSiN 3 [0 1 0] 上的黏附行为。结果表明:(1)硅分子通过范德华(vdW)相互作用在原始 CaAlSiN 3 [0 1 0] 上形成弱吸附,而由于界面处形成了氢键,硅分子在水解 CaAlSiN 3 [0 1 0] 上的吸附强度大大增强;(2)瞬态计算表明,由于吸附能增加以及表面粗糙度增加,硅在水解 CaAlSiN 3 [0 1 0] 上的滑动能垒高于在原始 CaAlSiN 3 [0 1 0] 上的滑动能垒。总的来说,本文的研究结果可以指导 LED 封装中荧光粉的选择、储存和工艺,也有助于改善高湿度条件下使用的 LED 封装的可靠性设计。
摘要:以三种方式定义了腐蚀渗透率(CPR):(1)特定环境中的任何金属在金属中的化学反应暴露于腐蚀性环境时导致的任何金属都会恶化,(2)腐蚀量损失的厚度损失的厚度,(3)腐蚀的速度扩散到材料内部的腐蚀速度。这项研究的目的是用碳化硅(SIC*)钢筋计算铝基质复合材料(ALSI10MG(b))的CPR,并具有基质复合百分比的变化。通过浸入Alsi10mg(b)和Alsi10mg(b)+SIC*的湿腐蚀试验中,在HCl酸,NaOH,NaCl的溶液中进行了湿腐蚀测试。在不同的pH(1,3,5,7,9,11和13)中也进行了湿腐蚀测试。发现,当pH时浸入HCl溶液的样品是1。我们还观察到添加SIC*可以降低材料的腐蚀速率。最后,这项研究表明,复合材料AC-43100(ALSI10MG(B))85% + 15%SIC*,它是抗腐蚀攻击的最佳材料,它具有最小的CPR值,其最小的CPR值低于腐蚀标准<0.5 mm/yr。
电线粘结仍然是微电子包装中的主要互连技术。在过去的三年中,显而易见的是,从AU和Cu线粘合到Cu键合的显着趋势变得显而易见。这是由于一般努力降低诸如AU之类的原材料的制造成本和价格上涨所致。尽管在最近几十年中已经进行了许多研究,但大多数都集中在Au Ball/楔形上。这项研究的结果表明,键合参数,键合质量和可靠性密切相互联系。然而,与AU相比,Cu的不同材料特性(例如对氧化和硬度的依从性)意味着这些见解不能直接传递到Cu键合过程中。因此,有必要进一步研究。本文讨论了在各种键合参数下的键合界面形成的研究。Cu线在AlsICU0.5金属化上键合,并进行了键合参数优化以识别有用的参数组合。根据这种优化,使用低,中和高的美国功率和粘合力的参数组合组装不同的样品。通过剪切测试和HNO 3蚀刻进行了界面分析。在200 c退火168 h和1000 h的设备的横截面上分析了金属相生长。在剪切测试期间,与低键合力和高美国势力的接触倾向于围墙。 粘合力被证明对金属间的形成产生显着影响,而我们的功率仅施加了较小的影响。金属相生长。在剪切测试期间,与低键合力和高美国势力的接触倾向于围墙。粘合力被证明对金属间的形成产生显着影响,而我们的功率仅施加了较小的影响。使用EDX分析退火样品的金属间相形成,并根据相形成动力学进行解释。确定了三个主要的金属间相。2010 Elsevier Ltd.保留所有权利。