金属增材制造 (AM) 为众多应用中优化设备的开发提供了无与伦比的设计自由度。使用 AlSi10Mg 等非传统铝合金的要求使得金属增材制造的合理微/纳米结构化具有挑战性。本文开发了相关技术,并研究了控制最常见金属增材制造材料 AlSi10Mg 微/纳米结构化的基本机制。合理设计了一种表面结构化技术,以形成以前未探索过的双层纳米级结构,从而实现极低的粘附性、出色的抗冷凝洪水能力和增强的液气相变。使用冷凝作为演示框架,结果表明,与最佳薄膜冷凝相比,双层纳米结构的传热系数高出 6 倍。研究表明,AM 纳米结构最适合限制液滴,同时减少粘附性以促进液滴分离。通过与过去报告的数据进行广泛的对比,我们发现,在高过饱和条件下,使用传统铝无法实现所展示的传热增强效果,这进一步激发了对 AM 纳米结构的需求。最后,事实证明,广泛的 AM 设计自由度与最佳 AM 纳米结构方法的协同组合可以提供具有出色热性能和功率密度的超紧凑冷凝器。
使用铝合金的添加剂制造是增加工业利益的主题。使用高功率激光器和粉末饲料的定向能量沉积是一个有用的选择,但是粉末流和激光束之间的相互作用尚未完全了解。众所周知,粉末颗粒在激光束中加热,一些理论模型预测它们可以达到汽化温度,并因相关的后坐力压力而改变了飞行路径。为了了解有关这些现象的更多信息,在不同的激光功率(高达6 kW)的高速摄像头和三批不同粒径的粉末(ALSI10MG)上观察到粉末流。结果表明,随着激光功率的增加,粉末聚焦的增加。此外,发现一些颗粒在激光束中分解。证明粒子瓦解最有可能是由后坐压力引起的动量引起的。
摘要:本文旨在回顾学生赛车离合器杆组件的重新设计方法,该组件经过拓扑优化并通过增材制造 (AM) 制造。在拓扑优化 (TO) 过程之前和之后进行了有限元法 (FEM) 分析,以实现优化部件的等效刚度和所需的安全系数。重新设计的离合器杆采用 AM - 选择性激光熔化 (SLM) 制造,并由粉末铝合金 AlSi10Mg 打印而成。研究的最终评估涉及重新设计的离合器杆与之前赛车中使用的现有部件的实验测试和比较。使用 TO 作为主要的重新设计工具和 AM 为优化部件带来了重大变化,特别是以下方面:减轻了部件的质量 (10%)、增加了刚度、保持安全系数高于 3.0 值并确保了更美观的设计和良好的表面质量。此外,使用 TO 和 AM 可以将多部件组装合并为一个由一种制造工艺制造的单个部件,从而缩短了生产时间。实验结果验证了模拟结果,并证明即使施加的载荷几乎比假设载荷高出 1.5 倍,部件上的最大 von Mises 应力仍然低于屈服极限 220 MPa。
激光粉床融合工艺越来越多地用于通过熔化并在快速移动的精细焦点激光束下熔化金属零件。需要快速估计所得温度场,融合区尺寸和冷却速率,以确保用最小缺陷的偏置精确零件制造。在这里提出了一个新型的三维分析传热模型,该模型可以在这里迅速可靠地以零件尺度模拟激光粉末床融合过程。体积热源项的构建是为了分析模拟熔体池的演化,其深度与宽度比相当。所提出的分析模型可以模拟零件尺度上的多个轨道和图层的构建速度明显要比文献中报道的所有数值模型要快得多。发现融合区形状和尺寸和冷却速率的计算结果与实验报告的结果非常吻合,该结果是在三种具有多种多样特性的常用合金的构建中,SS316L,TI6AL4V和ALSI10MG。基于分析计算的结果,提供了一组易于使用的过程映射,以估算多个过程条件,以获得一组目标融合区域二月,而无需试用和错误测试。
铝合金在增材制造中的应用因其先进的几何形状和轻量化应用而备受关注。在定向能量沉积中,粉末原料用激光束处理,这提供了很高的工艺灵活性。然而,由于铝合金对氧化和孔隙率的敏感性,粉末原料在储存或回收后老化仍然是一项根本挑战。为了研究这些影响,AlSi10Mg 粉末批次在不同条件下老化,并通过定向能量沉积进行处理。结果表明,粉末老化不会显著改变颗粒尺寸或形态,但它会在粉末中引入更多的氧和氢。颗粒的氧化降低了粉末对激光束的吸收率,增加了熔池的润湿性,从而影响了轨迹几何形状。在从老化粉末中沉积的材料中观察到 3.5 到 4.2 倍的孔隙率,这很可能是由于老化粉末中氢含量增加而导致的氢孔。用老化粉末制造的部件的拉伸性能显示屈服强度降低 19.0%,极限强度降低 14.2%,伸长率提高 99.2%,这很可能是由于微观结构变粗和孔隙率增加造成的。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
铝合金在增材制造中的应用因其先进的几何形状和轻量化应用而备受关注。在定向能量沉积中,粉末原料用激光束处理,这提供了很高的工艺灵活性。然而,由于铝合金对氧化和孔隙率的敏感性,粉末原料在储存或回收后老化仍然是一项根本挑战。为了研究这些影响,AlSi10Mg 粉末批次在不同条件下老化,并通过定向能量沉积进行处理。结果表明,粉末老化不会显著改变颗粒尺寸或形态,但它会在粉末中引入更多的氧和氢。颗粒的氧化降低了粉末对激光束的吸收率,增加了熔池的润湿性,从而影响了轨迹几何形状。在从老化粉末中沉积的材料中观察到 3.5 到 4.2 倍的孔隙率,这很可能是由于老化粉末中氢含量增加而导致的氢孔。用老化粉末制造的部件的拉伸性能显示屈服强度降低 19.0%,极限强度降低 14.2%,伸长率提高 99.2%,这很可能是由于微观结构变粗和孔隙率增加造成的。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
摘要:本文旨在回顾学生赛车离合器杆组件的重新设计方法,该组件经过拓扑优化并通过增材制造 (AM) 制造。在拓扑优化 (TO) 过程之前和之后进行了有限元法 (FEM) 分析,以实现优化部件的等效刚度和所需的安全系数。重新设计的离合器杆采用 AM-选择性激光熔化 (SLM) 制造,并由粉末铝合金 AlSi10Mg 打印而成。研究的最终评估涉及重新设计的离合器杆与之前赛车中使用的现有部件的实验测试和比较。使用 TO 作为主要的重新设计工具和 AM 为优化部件带来了重大变化,尤其是以下方面:减轻部件质量 (10%)、增加刚度、保持安全系数高于 3.0 值并确保更美观的设计和良好的表面质量。此外,使用 TO 和 AM 可以将多部件组装成一个由单一制造工艺制造的组件,从而缩短生产时间。实验结果证实了模拟结果,并证明即使施加的负载几乎比假设负载高 1.5 倍,组件上的最大 von Mises 应力仍低于 220 MPa 的屈服极限。
红外激光定向能量沉积 (DED) 铝材面临许多加工问题,例如成形性差、形成孔隙、反射率高等,这些都降低了生产率。本文开发并应用了 2 kW 高功率(450 nm)蓝光定向能量沉积 (BL-DED) 技术对纳米 TiB2 装饰的 AlSi10Mg 复合材料进行加工。单道实验表明,蓝光形成完全熔化轨道所需的功率密度低于红外激光(1060 nm)的功率密度。在 900 W 激光功率下,扫描速度为 4 mm/s,蓝光熔池宽度和深度分别约为 2500 μm 和 350 μm;而红外激光未能完全熔化,原因是铝对蓝光波长的吸收率较高。在 4 mm/s 下,等轴晶粒的面积分数高达 63%。据我们所知,这一结果是 DED 工艺单道熔池中等轴晶粒面积分数最高的一次。如此高的比例主要归因于平顶蓝光激光的低热梯度(8 × 10 5 K/m)和纳米 TiB2 颗粒的细化效果。我们的工作表明,与使用红外激光的铝合金和复合材料 DED 相比,高功率蓝光激光提高了效率和制造质量,这也有望帮助加工其他高反射率材料,如铜合金。
