大约有 1500 到 2000 名外星人生活在密歇根州东半部,普利茅斯高地的 N 族是代顿。Jewell。J. Faray。u. rlauL w. INynus。21.Dplgarelll。激增。一种新的音响系统在密歇根州东半部制造,是普利茅斯高地的 N 族。P. Daoust L. Mills。J. Jones。G. Pine 和 R. Lewis Goddard,Sible 总裁,通过团队的努力。董事会表示,Rocks 完成了他们的项目。 Mason;(第三排。从左到右。)T. West。F. Aldrich。L. Good- Leader,他将在周五晚上召开一个特别会议,召集一个城市、商会、一个非会议的市民。D. Grabowski。D. Smith。E. Ward。D. Manion,1 · 董事会会议决定哪些人将播出音乐晚会,他们将以 35 比 0 获胜,这让他们取得了 7 胜 0 负的战绩。C Tail。J.King。R. Clour,M. Hopper。D. Showers。R. Douglas Shaw,De- 可以在市中心地区作为 Woodward 大道进行,并且将成为 Troit 最大的电力合同商之一 - 可以在竞选期间进行一次平局。有关 Walled Lake 比赛的详细信息,请参阅 H. Monde; (第四排。1. 到右。)主教练凯特勒和托尔斯泰以及广为人知的平信徒捐款,圣诞节季节在几周后再次象征性地宣誓就职。底特律市政厅前。在体育版面上。如上图(前排。从左到右。)助理哈丁、沙利文、麦克福尔和桑德曼。在长老会教堂去世,尽管商业和工业的潜在用途如此之大,但 * 是:H. Bonga。D. Luker、C. MeKenna、G. Hubbell、Playon Jim Arnold 和 John Small 周日晚上突然缺席,市议会在三小时后才开始接受治疗,主席 George Wit-J. Agnew 当选当地青年。L. Juve。B. Petro。D. Wilkin。D. Day、H. Hopper 和 T. Rutherford:(第二排)。从左到右)D. David-·他一直在参加会议-
jayalakshmil Dodge Data & Analytics 4300 Beltway Place, Ste 150 Arlington, TX 76018 4133767032 jayalakshmil@construction.com Luke Bennett DRS Engineering Inc. 3564 Sagunto St Santa Ynez CA 93460 818 402 3962 Luke@DRS-Enginjeering.net Gene Spineto ENGEO Incorporated 3890 Murphy Canyon Road, Suite 200 San Diego CA 92123 8585736900 gspineto@engeo.com Michael I Friedman ESA Pacheco San Francisco CA 94116 8315358755 mfriedman@esaasoc.com Nagah Hanna Florence Filter Corporation 530 W Manvillle St. Compton CA 90220 310-637-1137 sales@florencefilter.com Bill Rettberg GEI Consultants 180 Grand Ave, Ste 950 Oakland CA 94598 510-350-2910 wrettberg@geiconsultants.com Erik R Hanson GSI 42526 Monahan Pl Murrieta CA 92562 9514609343 erik.hanson@gsi.us Grace Silverboard Haley & Aldrich 785 Ygnacio Valley Road Walnut Creek CA 94596 9259359771 gsilverboard@haleyaldrich.com Jim Ifland Ifland Engineers, Inc. 5300 Soquel Avenue, Suite 101 Santa Cruz CA 95062 (831) 426-5313 jimifland@iflandengineers.com Bid Research IMS 945 Hornblend Street Suite G 圣地亚哥 FL 92109 8584908800 ims_bids@construction.com Brian Forsthoff KANE GeoTech Inc. 7400 Shoreline Drive Suite 6 斯托克顿 CA 95219 2094721822 brian.forsthoff@kanegeotech.com 加州市场营销 Kimley-Horn and Assocaites, Inc. 1100 W Town and Country Road, Suite 700 橙县 CA 92868 714.939.1030 ca.marketing@kimley-horn.com Dilip Trivedi Moffatt & Nichol 2185 N California Bl, Ste 500 核桃溪 CA 94596 925-956-4943 dtrivedi@moffattnichol.com Jackie DieBold Monument 200 Spectrum Center, Suite 300尔湾 CA 92618 4086126769 jdiebold@monumentrow.com Eric Johnson 北美采购委员会,Inc. PB320 W. Ohio St., Suite 300 芝加哥 IL 60654 302-450-1923 sourcemanagement@napc.me Sam Merrill Northgate 环境管理 428 13th Street,4 楼 奥克兰 CA 94612 2076157523 sam.merrill@ngem.com Mary Miller Pwxpress 1900 Coffeeport Rd 杰克逊维尔 FL 32208 4086768941 bids@pwxpress.com Guadalupe BumataySandis 土木工程师测量师规划师 1700 S. Winchester Blvd., Suite 200 坎贝尔 CA 95008 5105903402 gbumatay@sandis.net
立方体的合成无功能立方体(Cub unfun ;由 GMO、尼罗河红和 F127 组成的空立方体)和空白立方体(Cub blank ;未经功能化的 PEG 化阳离子立方体,由 GMO、DSPE-PEG-Mal、DOTAP、尼罗河红和 F127 组成)的制备采用之前发表的方法并进行了一些修改 [1]。将 GMO、DSPE-PEG-Mal、DOTAP、尼罗河红、helenalin、SPION 溶解在乙醇中并充分涡旋混合(表 S1)。在 70 °C 的真空条件下在加热块中蒸发有机溶剂,然后在 N 2 气流下进一步干燥。将脂质混合物冷冻干燥过夜。然后将 2 微克/毫升 Pluronic F127(溶于 PBS)加入干脂质中,然后以 20 kHz 的频率进行超声处理,开启 5 秒,关闭 5 秒,持续 5 分钟。为了将未封装的化合物(如 helenalin 和 Nile Red)从立方相分散体中分离出来,使用 10 kDa MWCO Slide-A-Lyzer MINI 透析装置(Fisher Scientific Ltd,拉夫堡,英国)对溶液进行透析 2 小时。对于抗体结合,将 5 µg 抗 CD221 抗体与 50 ng Traut 试剂(Sigma Aldrich,吉林汉姆,英国)在磷酸盐缓冲液(0.1 M,2 mM EDTA,pH 8.0)中在室温(RT)下反应 1 小时进行硫醇化,导致 -SH 基团附着到完整的抗体上 [2]。或者,抗 CD221 抗体通过与 10 mM DTT 在室温下反应 2 小时在铰链区处被切割。反应结束后,通过 10 kDa MWCO 透析 2 小时从硫醇化抗体或半抗体中去除残留化学物质 [3]。纯化的硫醇化抗体或半抗体通过抗体的-SH 基团和立方体上的马来酰亚胺基团之间的硫醇-马来酰亚胺迈克尔反应过夜结合到 Cub 空白中,形成 Cub wh-Ab 或 Cub ha-Ab 。对于透明质酸 (HA) 结合,将不同体积的 1 mg/mL 透明质酸与 Cub 空白在室温下孵育 4 小时,产生 Cub 1-5%HA 。我们在溶剂蒸发之前将不同量的 SPION 掺入脂质混合物中,并通过超声处理生成 Cub 1-5%ION。通过将半抗体与 Cub 1%ION 结合,再与 HA 连接,合成三功能立方体 (Cub fun)。立方体中海伦那林的包封率 (EE) 是通过将载有海伦那林的立方体经 10 kDa MWCO 透析后用乙醇溶解,并通过液相色谱 (LC) 定量 NPs 中包封的海伦那林,然后将包封的海伦那林的量除以海伦那林的总量并乘以 100 来计算的。海伦那林的释放率是通过从 100 中减去 EE 来评估的。
根据世界卫生组织(WHO)(2),接受了至少一剂COVID-19-19和49亿剂的疫苗。在欧洲,接受助推剂量的人的百分比为30.9%(2)。在美国,已将第三剂Covid-19疫苗施用到约33%的人口)(3)。欧洲疾病预防与控制与欧洲医学局建议对60岁以上的人以及任何年龄段的人进行第四次剂量,至少在上一个年龄段至少4个月后管理,重点是6个月前接受过以前的助推器的人(4)。2022年3月,美国食品和药物管理局允许免疫功能低下的人和50岁以上的任何人进行第四次剂量(5)。另一方面,在以色列,第四剂的给药从2022年1月开始,为卫生服务的工人和60岁以上的人(6-8)开始。目前,在免疫功能低下的群体中为以色列人授予了第四剂。免疫功能低下的人约占总人群的3%,由于可能抑制或过度激活可归因于原发性疾病或并发治疗的免疫系统,因此特别值得关注(9)。在这一组中,SARS-COV-2感染和病毒脱落更加严重和持久,死亡的风险更高(10)。鉴于免疫反应的降低,免疫症患者不太容易发生COVID-19和细胞因子风暴的严重并发症。但是,他们更有可能发展机会性感染,以模仿SARS-COV-2感染的症状(11)。因此,已经提出了针对免疫功能强化患者的第四剂,包括器官移植受者(12-14),对实体瘤的主动治疗,血液学恶性肿瘤的患者,接受嵌合抗原受体(CAR) - T-CELL治疗或造血性干细胞的普通患者(中等程度)的患者(中等程度的中等),免疫疾病,严重的免疫降低,Digeorge综合征,Wiskott- Aldrich综合征),具有晚期或未经治疗的人类免疫降低病毒(HIV)感染(HIV和CD4细胞计数<200/MM 3,无免疫疾病的病史),或临床上的临床治疗疗法,或者临床上的临床治疗, high-dose corticosteroids (i.e., 20 or more mg of prednisone or equivalent per day when administered for 2 or more weeks), alkylating agents, antimetabolites, transplant-related immunosuppressive drugs, cancer chemotherapeutic agents classified as severely immunosuppressive, tumor necrosis factor (TNF) blockers, and other biologic agents that are免疫抑制或免疫调节(15)。迄今为止,尚未就免疫功能低下的队列中第四剂量的COVID-19疫苗的免疫原性进行系统评价。本文的目的是系统地审查文献,并报告第四剂量在免疫功能低下的人,涉及患者的类别以及到目前为止获得的结果。
我是微生物学教授,在分枝杆菌学和抗分枝杆菌药物研发方面拥有 20 多年的经验(>200 篇出版物;h 指数:58;i10 指数:148,D 指数:58)。我是哈肯萨克子午线健康中心 (CDI;新泽西州纳特利,我常驻的地方) 发现与创新中心的成员,也是哈肯萨克子午线医学院 (新泽西州纳特利) 和乔治城大学 (华盛顿特区) 的教授。之前的职位包括新加坡国立大学副教授和诺华公司结核病 (TB) 部门执行主任。2017 年从新加坡搬到美国后,我于 2018 年开始从事 NIH 资助的研究。自从我开始从事 NIH 资助的工作以来,我发现了一个总共 10 个先进的抗结核分枝杆菌线索(定义为在小鼠感染模型中具有暴露、耐受性和有效性的化合物)和几个重新利用的候选药物。阐明了 13 个线索的作用和抗药性机制。自 2018 年以来,我的工作产生了约 90 篇出版物。直到 2017 年,我都专注于发现用于治疗结核病(结核分枝杆菌)的新抗生素,该疾病领域已经建立了强大的临床前管道。在过去的几年里,我越来越多地将活动转向由“非结核分枝杆菌”(NTM)引起的被忽视的肺部疾病,重点是无法治愈的脓肿分枝杆菌感染。我的研究目标是填充 NTM 药物管道。我们确定全细胞活性物质的作用/抗药性机制,并利用这些知识来递送新型先导靶点组合和临床前开发化合物。我们通过双管齐下的方法填充临床前空间:从头药物发现(新靶点和/或新化学类型)和药物再造(通过化学优化改进已批准的药物)。此外,我们通过确定用于其他疾病适应症的临床使用(或开发)药物来填充临床 NTM 管道,以便重新利用。由于我在抗生素发现和多学科项目管理方面的经验,我非常适合领导“新药发现和重新利用方法以针对 M. 脓肿肺病的更好方案”项目,以推进我们的单一抗 NTM 药物和组合组合。在 CDI,我建立了一个功能齐全的 NTM 药物发现平台。该平台包括菌株收集、体外效力测定、以及体内(小鼠)药理学模型。靶标反卷积和抗性分析补充了我们的化合物分析能力。通过与来自工业界(包括葛兰素史克、默克、Evotec)和学术界(例如 AldrichlabUMinnesota;DrugDiscoveryUnit DundeeU、Richter/ImminglabsUHalle)的经过验证的药物化学合作伙伴合作,我开发了一个有吸引力的抗 NTM 项目组合,为加速发现和开发针对 NTM 肺病的全口服治疗方案奠定了良好的基础。
比奇中学八年级学生最近享受了一次华盛顿特区之旅,其中包括在葛底斯堡停留。此次旅行的亮点包括国会大厦、新闻博物馆、国家大教堂、使馆区、杰斐逊纪念堂、史密森尼博物馆、大屠杀纪念馆、肯尼迪中心、林肯纪念堂和越南墙。此次旅行包括参观弗农山庄,在那里学生们参观了华盛顿的故居和种植园,以及参观了阿灵顿国家公墓,在那里他们在无名烈士墓前献上了花圈。学生们还观看了“约瑟夫和彩色梦想 qpat”的表演。参加此次旅行的八年级学生有 David Ahrens、Courtney Aili、Bryan Aldrich、Terence Arnold、Robyn Bailey、Andrea Ball、SbenaBail、Clifton Ballard、Andrea Bassett、Rachel Bazydlo、Kerri Bean、Kyle Bear 和 Marcus Benedict。布列塔尼·贝内特 (Brittany Bennett)、肖恩·伯格曼 (Shawn Bergman)、丹尼尔·宾格 (Daniel Binge)、萨曼莎·博格丹斯基 (Samantha Bogdanski)、杰米·拉夫 (Jamie Rougher)、乔丹·博伊斯 (Jordan Boyce)、惠特尼·布兰森 (Whitney Branson)、丹尼尔·布伦南 (Daniel Brennan)、帕特里克·布鲁克斯 (Patrick Brooks)、杰西卡·伯曼 (Jessica Burman)、肖恩·布什 (Shaun Bush)、黑尔·巴特勒 (Hale Butler)、约翰·卡勒里 (John Callery)、安东尼·奇奥多 (Anthony Chiodo)、布兰登·科菲 (Branden Coffey)、马修·柯林斯 (Matthew Collins)、布雷特·康芒 (Brett Common)、雷切尔·科瑟 (Rachel Corser)、埃里夫塔·科特 (Erifta Cote)、史蒂文·克鲁斯 (Steven Crews)、布莱恩·切尔温斯基 (Brian Czerwinski)、斯宾塞·丹尼尔斯 (Spencer Daniels)、艾米丽·道特 (Emily Dault)、珍妮弗·德沃尔 (Jennifer DeWall)、安娜·德罗 (Anna Drow)、约翰·邓恩 (John Dunn)、布拉德利·埃德加 (Bradley Edgar)、内森·艾森伯格 (Nathan Eisenberg)、约翰·恩格尔伯特 (John Engelbert)、迈克尔·恩斯特 (Michael Ernst)、贾斯汀·埃施 (Justin Esch)、本杰明·费斯 (Benjamin Faeth)、布赖恩·费尔德坎普 (Brian Feldkamp)、约书亚·菲什 (Joshua Fish)、杰弗里·菲奇 (Jeffery Fitch)、瑞安·福特 (Ryan Ford)、娜塔莉·福希 (Natalie Forshee)、霍莉·方丹 (Hollie Fountain)、雷切尔·根茨 (Rachel Gentz)、Nlchole Gtbbs-Risner、艾伦·吉莱切克 (Alan Gileczek)。金
地质学、工程地质学、岩石力学和岩石工程领域已发表论文的一些参考文献 1. Aagaard B.、Grøv E. 和 Blindheim OT (1997):喷射混凝土作为不利岩石条件下岩石支护系统的一部分。国际岩石支护研讨会,地下结构应用解决方案。挪威利勒哈默尔。 2. Aagaard B. 和 Blindheim OT (1999):挪威三条海底隧道穿越极差薄弱区。ITA 世界隧道大会 '99 论文集,奥斯陆,10 页。 3. Aasen O.、Ödegård H. 和 Palmström A. (2013):阿尔巴尼亚加压引水隧道规划。挪威水电隧道 II。出版物编号。 22. 挪威隧道协会,2013 年,第 21-27 页。4. Abbiss CP(1979 年):通过地震勘测和大型水箱试验对 Mundford 白垩的硬度进行了比较。Géotechnique,29,第 461-468 页。5. Abelo B. 和 Schlittler F.(1973 年):为玻利维亚中央系统提供额外电力。Water Power,1973 年 4 月,第 121-128 页。6. Aglawe JP(1998 年):高应力地面地下洞室周围的不稳定和剧烈破坏。加拿大金斯敦皇后大学采矿工程系博士论文。正在进行中。7. Aitcin PC、Ballivy G. 和 Parizeau R.(1984 年):浓缩硅灰在灌浆中的应用。创新水泥灌浆,ACI 出版物 SP-83,1984 年,第 1-18 页。 8. Aksoy OC、Geniş M.、Aldaş UC、Özacar V.、Özer CS 和 Yılmaz Ö.(2012 年):使用经验方法确定岩体变形模量的比较研究。工程地质学 131-132,19-28。 9. Aldrich MJ(1969 年):孔隙压力对 Berea 砂岩受实验变形的影响。美国地质学会通报,第 80 卷,第 8 期,第 1577-1586 页。 10. Aleman,VP(1983 年):悬臂式掘进机的切割率预测,隧道和隧道施工,第 23-25 页。 11. Alemdag S.、Gurocak Z. 和 Gokceoglu C. (2015):一种基于简单回归的岩体变形模量估算方法。J. Afr. Earth Sci. 110,75–80。12. Alemdag S.、Gurocak Z.、Cevik A.、Cabalar AF 和 Gokceoğlu,C. (2016):使用神经网络、模糊推理和遗传编程对分层沉积岩体的变形模量进行建模。工程地质学 203,70–82。13. Allen H. 和 Johnson AW (1936):确定土壤膨胀特性的测试结果。公路研究委员会会议记录,美国 16,220。14. Almén KE.、Andersson JE.、Carlsson L.、Hansson K. 和 Larsson NA。 (1986):结晶岩的水力测试。单孔测试方法的比较研究。SKB 技术报告 86-27。Svensk Kärnbränslehantering AB。15. Alonso E. 和 Berdugo IR (2005):含硫酸盐粘土的膨胀行为。Proc. Int. Conf. Problematic Soils。法马古斯塔,2005 年。
(R) * PrD 街道名称后缀 PoD 新 ADC 网格 税图编号 位置 RT # 1st Corp 小巷 47 Courthouse Village 24th STREET 6846-C1 37 pvtrd off Tidewater Trail AARON ~ ~ ~ ~ ~ ~ 参见 Arend * ABBERLY VILLAGE LANE 6844-J2 35 Abberly Village / Southpoint ABBEY LANE 6720-C9 22K Windsor Place 1384 * S ABBIE MOORE COURT 6719-E8 21M Thorburn Estates Section 2 * N ABBIE MOORE COURT 6719-E8 21M Thorburn Estates Section 2 * ABBOTSWELL PLACE 6845-B7 36H Briarhaven Phase 1 ABERDEEN COURT 6845-H1 37 Lee's Crossing 2242 (R) * ABES COURT 18C Fawn Lake ABINGDON COURT 6720-E7 23Q Salem Run 1465 ABNER COURT 6719-G4 21C Grantwood Acres ~ 原为 Dickinson ACADEMY DRIVE 6721-A10 24 Fredericksburg Academy Complex ACCOKEEK LANE 6968-A5 62A Indian Acres ~ 第 9 区 * ACCORD COURT 6721-D7 24J Lafayette Crossing ACOMA LANE 6968-B8 62A Indian Acres ~ 第 18 区 ACORN LANE 6717-D1 8A Forest Walk ACREE AVENUE 6720-E6 23Q Salem Run Apartments (R) * ACTON DRIVE 19B Whitehall * ADAMS LANE 6718-C2 10B WCR 总统小屋区 ADAMSON LANE 7090-A3 75 Adamson Tract ADAMSON LANE ~ ~ ~ ~ ~ ~ Heritage Hills ~ 已更名 Argall (R) * ADARSH COURT Thornburg Commons (R) * ADARSH LANE Thornburg Commons ADENA LANE 6968-B6 62A Indian Acres ~ 第 5 区 ADIOS COURT 6719-J9 22T Salem Fields ~ Brookfield 2123 (R) * AFFINITY Lee Garrison * AFTON DRIVE 6843-D9 47F Afton at Keswick * AFTON GROVE COURT 6721-D10 24M AFTON AGECROFT ROAD 7089-C1 74 Lexington AGNES LANE 6843-K4 34C Bloomsbury 农场庄园 2151 AHNAKI LANE 6968-A7 62A 印第安英亩 ~ 第 13 区 AIRDRIE LANE 6845-C4 36F Lees Hill ~ Turnberry East AKEE LANE E 6968-B6 62A 印第安英亩 ~ 第 5 区 AKEE LANE W 6968-B6 62A 印第安英亩 ~ 第 5 区 ALACHUA LANE 6968-B7 62A 印第安英亩 ~ 第 5 区 ALBANY STREET 6720-A6 22A 林业 1175 ALBERTA DRIVE 6845-F6 36G Timberlake 1693 ALBERTA DRIVE N 6845-F6 36G Timberlake 1693 ALBIN COURT 6720-E6 23Q Salem Run 联排别墅(R) * ALBURY DRIVE 19B Whitehall ALCOMA LANE 6968-C8 62A Indian Acres ALDRICH COURT 6843-H8 48C Courthouse Commons 1488 ALEUT LANE 6968-B8 62A Indian Acres ~ 第 17 区 ALEXANDER TRAIL 6718-F1 10B WCR Glen 3 * ALEXANDERS CROSSING WAY 6845-A6 50 Alexanders Crossing * ALEXANDRIA CIRCLE ~ ~ ~ ~ ~ ~ Lees Hill ~ 已更名为 Chris Shan ALEXANDRIA STREET 6721-B7 24B Roseland 1212 * ALEXIS FORK 6719-A7 21 The Woods of Catharpin 2312 ALGONQUIN DRIVE 6968-B6 62A Indian Acres ~ 第2 ALICIA COURT 6720-D6 23N Sheraton Oaks 1468 * ALLEGHANY WAY 6844-H4 35M Lees Parke ~ Pod B,第 2B 区 * ALLENDALE COURT 18C Fawn Lake,第 25 区 * ALLERTOW ROAD 6844-K2 35 Oxford Apartments at Southpoint Landing * ALLIANCE COURT 6721-C7 24J Lafayette Crossing * ALLIANCE WAY 6721-C7 24J Lafayette Crossing 1547 ALLIE COURT 6846-C1 25E Hamiltons Crossing 2212
在过去的几十年中,人因工程学和人体工程学从业者越来越多地在系统设计和开发过程的早期被要求参与。与一个或多个学科后来发现需要更改的情况相比,所有学科的早期投入可以带来更好、更集成的设计,并降低成本。作为人因工程学和人体工程学从业者,我们的目标应该是提供关于人、人与系统的交互以及由此产生的总体性能的实质性和有充分支持的意见。此外,我们应该准备好从系统概念开发的最早阶段开始提供这种意见,然后贯穿整个系统或产品生命周期。为了应对这一挑战,多年来,许多人因工程学和人体工程学工具和技术已经发展起来,以支持早期分析和设计。两种特定类型的技术是设计指导(例如,O’Hara 等人1995;Boff 等人1986)和高保真快速原型用户界面(例如,Dahl 等人1995)。设计指导技术以手册或计算机决策支持系统的形式出现,将人为因素和人体工程学知识库的选定部分放在设计师的指尖,通常以针对特定问题(如核电站设计或 UNIX 计算机界面设计)量身定制的形式出现。但是,设计指南的缺点是它们通常不提供根据设计对系统性能进行定量权衡的方法。例如,设计指南可能会告诉我们高分辨率彩色显示器将优于黑白显示器,它们甚至可能告诉我们在增加响应时间和降低错误率方面的价值。但是,这种类型的指导很少能很好地洞察人类表现的这一改进元素对整个系统性能的价值。因此,设计指导对于为系统级性能预测提供具体输入的价值有限。另一方面,快速原型设计支持分析特定设计和任务分配将如何影响人类和系统级性能。与所有以人为对象的实验一样,原型设计的缺点是成本高昂。尤其是基于硬件的系统(如飞机和机械)的原型开发成本非常高,尤其是在设计初期,因为那时存在许多截然不同的设计理念。人类行为和表现的计算机建模并不是一项新尝试。尽管花费不菲,但硬件和软件原型设计对于人为因素从业者而言仍是重要的工具,而且它们在几乎所有应用领域的使用都在增长。虽然这些技术对于人为因素从业者而言很有价值,但通常需要的是一种能够从人为因素和人体工程学数据基础(如设计指南和文献中所反映的那样)推断的集成方法,以便支持作为设计替代方案的函数的系统级性能预测。该方法还应以相互支持和迭代的方式与快速原型设计和实验相结合。正如在许多工程学科中的情况一样,这种集成方法的主要候选对象是计算机建模和仿真。复杂认知行为的计算机模型已经存在 20 多年(例如 Newell 和 Simon 1972),并且自 20 世纪 70 年代以来,就已经出现了用于任务级绩效的计算机建模工具(例如 Wortman 等人1978)。但是,在过去十年中,有两件事发生了显著变化,促使使用计算机建模和模拟人类表现作为从业者的标准工具。首先是计算机能力的快速提升以及与之相关的更易于使用的建模工具的开发。有兴趣通过模拟预测人类表现的个人可以从各种基于计算机的工具中进行选择(有关这些工具的完整列表,请参阅 McMillan 等人1989)。第二,研究界越来越关注开发人类表现的预测模型,而不仅仅是描述模型。例如,GOMS 模型(Gray 等人1993)代表将研究整合到一个模型中,用于预测人类在现实任务环境中的表现。另一个例子是认知工作量的研究,它被表示为计算机算法(例如,McCracken 和 Aldrich 1984;Farmer 等人1995)。给定人类所从事的任务和设备的描述,这些算法支持评估何时可能发生与工作量相关的性能问题,并且通常包括识别这些问题对整体系统性能的定量影响(Hahler 等人1991)。这些算法在作为关键组件嵌入到任务和环境的计算机模拟模型中时特别有用。计算机建模和模拟最强大的方面可能在于它提供了一种方法,通过该方法,人因和人体工程学团队可以与
致谢 中期审查工作组受益于许多人提出的意见和观察,这些意见和观察通常非常广泛,并且总是受到高度赞赏。这些贡献的价值得到了充分的认可。在一些情况下,这些观察是深刻的;工作组总是对这些意见进行深入考虑,但有时也认识到所提出的问题无法完全纳入本次中期审查的范围。此类评论已被记录下来,以便以后再关注。