基于CRISPR的技术的精度和多功能性,再加上基于核酸的纳米技术的优势,在改变分子诊断的景观方面有着巨大的希望。尽管已经取得了重大进展,但目前基于CRISPR的平台主要集中在核酸检测上。为扩展适用性并充分利用基于CRISPR的诊断提供的优势,持续的努力探讨了分子策略,以开发能够检测核酸以外的各种分析物的CRISPR传感器。此外,挑战仍然存在于CRISPR平台用于护理点(POC)应用的适应,涉及诸如可移植性和自动化之类的关注点,以及与多路复用相关的复杂性。在这里,我们对分子策略进行了详细的分类和全面讨论,该分子策略促进了非核酸靶靶标结合到CRISPR驱动的输出中,重点是其相应的设计原理。此外,评论的第二部分概述了当前的挑战和潜在的解决方案,这些挑战将这些策略无缝整合到用户友好的平台中,并快速测试为护理点(POC)量身定制。
Alessandro Prigione博士于2002年从意大利米兰大学获得了医学博士学位,并于2008年获得意大利圣拉达尔大学的博士学位。 在接受培训期间,他在米兰 - 比科卡大学(University of Milan-Bicoccca)的神经系统疾病工作,美国加利福尼亚大学戴维斯大学(UCD)的线粒体疾病(UCD),鼠标诱导的多能干细胞(IPSCS)在米兰米兰的圣拉菲尔科学研究所的多能干细胞(IPSC),意大利米兰的IPSCS,以及Max Planck Instute in Max Planck Institute in Berlin Germany in Berlin Emany。 从2014年到2019年,他是德国柏林Max Delbrueck分子医学中心(MDC)的Delbrück研究员。 2019年,他搬到了德国杜塞尔多夫的海因里希海因大学(HHU),在那里他被任命为普通儿科系儿科代谢医学终身副教授。 Prigione组的兴趣是开发IPSC驱动的方法,用于发现影响线粒体代谢的罕见无法治愈的神经和神经发育障碍。 特定的重点是利格综合征,这是影响儿童的最严重的线粒体疾病。 使用Leigh综合征患者的神经元和脑器官,他们正在解剖神经元特异性疾病机制,以鉴定干预措施的靶标。 该实验室将基因组编辑技术应用于核和线粒体基因组来开发工程疾病模型。 他们采用模型使用高内感成像方法执行复合筛选。Alessandro Prigione博士于2002年从意大利米兰大学获得了医学博士学位,并于2008年获得意大利圣拉达尔大学的博士学位。在接受培训期间,他在米兰 - 比科卡大学(University of Milan-Bicoccca)的神经系统疾病工作,美国加利福尼亚大学戴维斯大学(UCD)的线粒体疾病(UCD),鼠标诱导的多能干细胞(IPSCS)在米兰米兰的圣拉菲尔科学研究所的多能干细胞(IPSC),意大利米兰的IPSCS,以及Max Planck Instute in Max Planck Institute in Berlin Germany in Berlin Emany。从2014年到2019年,他是德国柏林Max Delbrueck分子医学中心(MDC)的Delbrück研究员。2019年,他搬到了德国杜塞尔多夫的海因里希海因大学(HHU),在那里他被任命为普通儿科系儿科代谢医学终身副教授。Prigione组的兴趣是开发IPSC驱动的方法,用于发现影响线粒体代谢的罕见无法治愈的神经和神经发育障碍。特定的重点是利格综合征,这是影响儿童的最严重的线粒体疾病。使用Leigh综合征患者的神经元和脑器官,他们正在解剖神经元特异性疾病机制,以鉴定干预措施的靶标。该实验室将基因组编辑技术应用于核和线粒体基因组来开发工程疾病模型。他们采用模型使用高内感成像方法执行复合筛选。根据这种基于IPSC的方法,Prigione组鉴定出的一种可探测药物最近收到了欧洲药品局(EMA)来治疗Leigh综合征的孤儿药物标签,并且为此,这项临床试验正在开发中。
2022-2023种子赠款,世界癌症研究基金(WCRF):甜味饮料会产生胰腺癌风险吗?询问由饮食果糖引起的代谢改变(项目ID#2021-1769)角色:PI£64000在EAI基因组学中2021-2022 2021-2022跨国通道(TNA)项目:解剖表观遗传和细胞的炎症记忆,以提高PACCREATIC CALCON CARCE CRACER PROCTIC PROVIENT ID#:PROCPECT ID ID#:151515)。€ 50000) 2020-2024 My First AIRC Grant, Italian Association for Cancer Research (AIRC): Interrogating metabolic and epigenetic reprogramming in pancreatic cancer initiation (Project ID#: 23029) Role: PI € 500000 for 5 years 2019-2022 iCARE Fellowship from Italian Association for Cancer Research (AIRC): Metabolically- regulated epigenetic landscape in胰腺癌的启动(项目ID#:22550)角色:研究员 - 2020年€165000€3年2020-2022 R21 Grant,国家癌症研究所(NCI):询问线粒体到核核的及胰腺癌启动中的线粒体通讯 Grant, the WorldWide Cancer Research Foundation (WWCR): Mitochon- dria-to-nucleus communication in pancreatic cancer (Project ID#: 20-0188) Role: PI £ 275000 for 3 years 2020-2022 Individual Fellowship from EU-MSCA: OPEN P-CAN, OPA1 educates the nucleus in pancreatic cancer (Project ID#: 894289) Role: Fellow € 180000 for 2多年的专业活动委员会2020年的专业活动委员会 - 国际癌症代谢学会(ISCAM)的现任董事会2019年 - 现任审查委员会,分子和蜂窝生物学部分,2019年肿瘤学的前沿 - 现任外部审查小组,ICGEB-CRP研究赠款计划2020年 - 2020年 - 现任咨询委员会成员,现任咨询委员会成员,转换侵入(Elsevier)(Elsevier; ISSN:1936-5233)2020年 - 现任外部审稿人,全球癌症研究计划2021年 - 现任外部评估者UNA4Career(EU Cofund,Univ Computense de Madrid)2023 - 现任专家,Uncan.eu Initiative 2019 - 2019年 - 目前的Ad Hoc审查员:核酸研究:核酸研究:核酸研究(ISSN:ISSN:ISSN:0305-105-105-105-1048); OnCotArget(ISSN:1949-
专业资料是一位经验丰富的石油探索者,在操作地质,石油盆地评估和管理以及各种技术计划的实施方面拥有四十(40)年的经验。准备了许多盆地/潜在客户评估,预后良好,计划,协调并实施了许多地质项目。对菲律宾和东南亚地区的各种盆地进行了多次评估。自2005年以来,为Philodrill Corporation制定,管理和实施了石油和天然气勘探和生产计划。目前,在能源部负责能源资源开发局(ERDB),石油行业管理局(OIMB)和海上风能和地热能事务咨询咨询。
● 2023 年元宇宙计算、网络和应用国际会议(MetaCom 2023)技术程序委员会 ● IEEE 通信和网络标准会议(CSCN 2022)技术程序委员会 ● TheWebConf 2023 安全、隐私和信任技术程序委员会(TheWebConf 2023) ● 全球信息基础设施和网络研讨会(GIIS 2022)技术程序委员会 ● 第三届 CPS 和物联网安全与隐私联合研讨会(CPS&IoTSec)技术程序委员会,与 CCS 2022 共同举办 ● 第六届物联网安全与取证国际研讨会(IoT-SECFOR)技术程序委员会,与 ARES 2022 共同举办 ● 第一届移动物联网安全与隐私研讨会(SP-MIoT 2022)技术程序委员会,与 ESORICS 2022 共同举办 ● IEEE 测量和网络(M&N 2022)技术程序委员会成员● 物联网无线传感器和无人机(Wi-DroIT 2022)技术程序委员会成员,与第 18 届传感器系统分布式计算国际会议(DCOSS2022)共同举办 ● 第四届应用智能和区块链安全国际研讨会(AIBlock 2022)技术程序委员会,与 2022 年应用密码学和网络安全国际会议(ACNS)联合举办 ● 第二届软件和系统高级安全国际研讨会技术程序委员会
2002–2015 巴里理工大学自动控制专业全职助理教授。研究领域为基于模型和数据驱动的优化与控制、复杂网络与系统、机电一体化、机器人技术。他在本科和研究生课程中教授动态系统、控制和机器人技术领域的多门课程。 1999–2002 墨西拿大学工业机器人学合同教授。
为了减少二氧化碳排放,必须考虑一种颠覆性的飞机推进概念。如过去几年所研究的那样,混合分布式电力推进是一种很有前途的选择。在这项工作中,我们研究了使用这项技术的新概念飞机的可行性。我们使用了两种不同的能源:燃料发动机和电池。之所以选择后者,是因为它们在操作过程中具有灵活性,并且在未来几年内有望得到改善。本研究考虑的技术前景是 2035 年:因此我们对电气元件、机身和推进系统做出了一些关键假设。由于这些数据存在不确定性,因此我们进行了敏感性分析,以评估技术变化的影响。为了评估所提出概念的优势,我们将其与基于当今技术(机身、推进系统、空气动力学)发展的传统飞机(EIS 2035)进行了比较。