运用数学游戏应用进行数字化游戏化学习对四年级学生计算能力的影响 刘濝濢 -Bei LIU a* , Alex Wing Cheung TSE b* 香港大学教育学院,香港 a* u3598295@connect.hku.hk; b* awctse@hku.hk 摘要:计算能力是小学数学学习中必不可少的素质,事实证明,通过游戏化应用进行学习可以提高学生的数学学习成绩,从而有利于发展他们的计算能力。计算能力是数学核心技能之一,可以通过不断的计算练习来提高。然而,目前关于在小学使用运用数学游戏应用进行数字化游戏化学习 (DGBL) 对发展学生计算能力的影响的研究还很少。因此,本项准实验研究共有78名学生参与,旨在评估通过iPad进行DGBL与数学游戏应用“口算英雄”对中国大陆一所主流学校四年级学生计算能力的可能影响。实验班将数学游戏应用融入为期四周的课堂活动中,实验组和对照组均采用标准化计算能力测试:Abilita diCalcoloz计算能力-记忆与训练第6-11组(Cornoldi等,2002)进行前测和后测。采用方差分析的数据分析结果显示,在数学课堂上使用iPad上的数学游戏应用学习时,学生的计算能力存在显著差异,四年级实验组(n=40)与对照组(n=38)的整体计算能力存在显著差异。换句话说,我们发现,在使用数学游戏应用进行计算练习后,学生更有可能获得更好的计算能力,尤其体现在计算速度更快、错误率更低方面。然而,在数值知识方面没有显著差异,使用这种数学游戏应用程序学习可能不会导致获得更多的数学知识。这项研究为小学数学教育者和教师提供了一个现实的视角来了解使用数学游戏应用程序学习的潜力:它可以成为提高四年级学生计算能力的有效工具。该项目的第二阶段是探索研究结果背后的原因,揭示使用数学游戏应用程序进行 DGBL 的可能因素,这些因素可能会促进计算能力的某些方面。提出了将 DGBL 融入小学数学课堂的进一步建议。关键词:基于数字游戏的学习、计算能力、数学游戏 1。引言:学生的计算能力是指理解数字之间规律和相对量,并以更灵活的方式进行数字运算(加、减、乘、除)的能力(Feigenson 等,2004;Tall 和 Dehaene,1998)。计算能力对于小学阶段的数学成绩至关重要(Cowan 等,2011)。与不同领先国家的小学数学课程类似,根据中国大陆最新的课程标准,四年级学生必须掌握四种运算(加、减、乘、除),并且需要不断练习计算能力以找到更简单的解决方案(中华人民共和国教育部,2022)。学生的表现和
英国科尔切斯特埃塞克斯大学的数学,统计和精算学院; b英国坎特伯雷大学的数学,统计和精算学院;伦敦伦敦大学哥伦比伦顿大学的C级; D SchoolofbiologicySciences,英国诺里奇的东安格利亚大学;中国昆明,中国科学院昆明动物学学院生物多样性与生态安全的主要实验室; F Kunming生命科学学院,中国科学院,中国北京; G俄勒冈州立大学野生动植物,保护科学系,科瓦利斯,俄勒冈州渔业系;英国兰开斯特的兰开斯特大学H兰开斯特环境中心; I Durrell保护与生态研究所,肯特大学,坎特伯雷,英国
对当前 AI 格局的简要调查证明了这一点。在经济的所有领域,企业、组织和个人用户都在决定是否采用 AI 工具和系统——他们需要对这些系统的设计、测试和部署方式有信心。今天,小企业主在决定是否使用自动化 AI 招聘工具时,没有有意义的评估标准或可见性来评估该工具是否会歧视某些求职者,从而使企业面临法律和声誉风险以及人才流失。决定是否使用生成式 AI 工具的人必须依赖公司关于准确性、偏见缓解、数据隐私和安全性的难以判断的断言。鉴于技术进步的快速步伐以及 AI 公司和客户之间权力和信息的不对称,立法将在制定赢得人们信任的基准标准方面发挥重要作用。
摘要AI的发展为传播者(即,对话代理人),已经为AI在人们的社会世界中的位置以及人类和机器之间的感知过程,尤其是自闭症患者,尤其是可能从这种互动中受益的人。当前的研究旨在在1-4周内探索六个自闭症和六个非自闭症成年人与对话虚拟人(CVH/对话剂/聊天机器人)的相互作用。使用半结构化访谈,对话性聊天案和研究后的在线问题,我们介绍了与人类chatbot互动,聊天机器人人性化/DEHU MANIVIANGE和CHATBOT的自闭症/非独立性特征有关的发现。发现表明,尽管自闭症用户愿意与聊天机器人交谈,但没有迹象表明与聊天机器人建立关系。我们的分析还强调了自闭症用户对聊天机器人的同理心的期望。对于非自动用户的情况,他们试图通过不断测试AI对话/认知技能来扩展对话代理的能力。此外,非自动用户对Kuki的基本对话技能感到满意,而在Con Trary,自闭症参与者中,他们期望更多的深度对话,因为他们更信任Kuki。这些发现提供了针对自闭症用户的新型人与chatbot互动模型的见解,以通过陪伴和社交联系来支持他们。
HONORS & AWARDS Honorable Mention, SIOP Owens Scholarly Achievement Award (Best Paper) for 2020 Carter et al., Understanding job satisfaction in the causal attitude network (CAN) model European Association for Work and Organizational Psychology (EAWOP) Best 2019 Practitioner Poster Finalist for Harris et al., Applicant Reactions to Ideal Point Measures of Personality Herbert Zimmer Award for Research Scholarship 2018 University of Georgia, I-O心理学系Donald L.授予杰出硕士论文奖学金2018年佐治亚大学,I-O心理学系DAN MACK研究奖与个体差异和选择有关的研究2017年佐治亚大学I-O心理学系
对于可持续发展目标而言,人工智能意味着什么?在深入探讨人工智能如何为长期解决健康问题做出贡献之前,我们有必要先从简单问题开始:什么是人工智能?一个简单的定义是,人工智能是数字计算机或计算机控制的机器人执行通常与智能生物相关的任务的能力 [7]。此外,它是可持续发展所需的盟友,可以更有效地设计、执行、建议和规划地球的未来及其可持续性。目前,人工智能能力正以各种方式被用于进一步实现社会目标,而可持续发展目标 3 中关于“良好健康和福祉”的内容在联合国 2015 年制定的 17 个可持续发展目标中占有重要地位 [6]。
摘要 应对可持续发展政策挑战需要能够驾驭复杂性的工具,以改善政策流程和结果。过去十年来,人们对人工智能 (AI) 工具的关注度和政府对其使用的期望急剧上升。我们对学术和灰色文献进行了叙述性回顾,以调查人工智能工具如何用于政策和公共部门决策。我们发现,学者、政府和顾问对人工智能表达了积极的期望,认为人工智能可以或应该用于解决广泛的政策挑战。然而,关于公共决策者如何实际使用人工智能工具或对使用结果的详细洞察的证据却少得多。从我们的研究结果中,我们得出了将人工智能的承诺转化为实践的四个教训:1) 记录和评估人工智能在现实世界中对可持续发展政策问题的应用;2) 关注现有和成熟的人工智能技术,而不是投机性的承诺或外部压力;3) 从要解决的问题开始,而不是要应用的技术;4) 预测并适应可持续发展政策问题的复杂性。