内分泌疾病,包括糖尿病,甲状腺功能障碍和其他激素失衡,对全球疾病负担显着贡献(1)。这些疾病不仅会影响公共卫生,而且会导致长期残疾和受影响个体的生活质量降低(1)。这些疾病的患病率正在增加,尤其是在人口老龄化和代谢疾病发生率增加的情况下(2,3)。这些疾病可能是由单个基因(孟德尔或单基因疾病)中的罕见变异引起的,由多种遗传变异的综合作用,或环境和生活方式因素(2型糖尿病型糖尿病或肥胖)引起的。新技术(例如基因疗法)在无法用传统药物有效治疗疾病时会提供希望。当已知遗传疾病的病因时,这是可能的。因此,在基因治疗药物的帮助下,将基因的功能副本引入了人体,从而减慢了疾病的进展,在某些情况下甚至可以取得显着改善(4)。近年来,技术的进步促进了广泛种群的基因组多样性的特征(5)。下一代测序(NGS)和基因组广泛的关联研究(GWASS)已被强烈用于研究内分泌疾病的遗传基础(6-9)。为提高诊断,预后和遗传咨询的准确性,越来越多地认识到具有特定诊断患者(12)患者的变异数据库的重要性。然而,使用美国医学遗传学学院和分子病理学协会(ACMG/AMP)广泛推荐的标准对识别变体的解释是具有挑战性的,因为在大多数数据库中,与规格变体相关的详细表型信息在大多数数据库中受到限制(11)。此类数据库构成了遗传变异的系统组织的存储库,并补充了临床数据(13)。通过允许共享有关基因,变体和病理表型的信息,他们促进了研究人员,临床医生和患者之间的沟通(11)。先前的研究创建了数据库,其中包括与特定内分泌病有关的遗传变异。例如,MARGRAF等人开发的MEN2 RET数据库。是一个可公开访问的数据库,其中包含与MEN2综合征以及相关临床数据相关的所有RET序列变体(14)。“ NGS和PPGL研究小组”还收集并在SDHB基因中进行了分类,这是负责
对当前 AI 格局的简要调查证明了这一点。在经济的所有领域,企业、组织和个人用户都在决定是否采用 AI 工具和系统——他们需要对这些系统的设计、测试和部署方式有信心。今天,小企业主在决定是否使用自动化 AI 招聘工具时,没有有意义的评估标准或可见性来评估该工具是否会歧视某些求职者,从而使企业面临法律和声誉风险以及人才流失。决定是否使用生成式 AI 工具的人必须依赖公司关于准确性、偏见缓解、数据隐私和安全性的难以判断的断言。鉴于技术进步的快速步伐以及 AI 公司和客户之间权力和信息的不对称,立法将在制定赢得人们信任的基准标准方面发挥重要作用。
摘要AI的发展为传播者(即,对话代理人),已经为AI在人们的社会世界中的位置以及人类和机器之间的感知过程,尤其是自闭症患者,尤其是可能从这种互动中受益的人。当前的研究旨在在1-4周内探索六个自闭症和六个非自闭症成年人与对话虚拟人(CVH/对话剂/聊天机器人)的相互作用。使用半结构化访谈,对话性聊天案和研究后的在线问题,我们介绍了与人类chatbot互动,聊天机器人人性化/DEHU MANIVIANGE和CHATBOT的自闭症/非独立性特征有关的发现。发现表明,尽管自闭症用户愿意与聊天机器人交谈,但没有迹象表明与聊天机器人建立关系。我们的分析还强调了自闭症用户对聊天机器人的同理心的期望。对于非自动用户的情况,他们试图通过不断测试AI对话/认知技能来扩展对话代理的能力。此外,非自动用户对Kuki的基本对话技能感到满意,而在Con Trary,自闭症参与者中,他们期望更多的深度对话,因为他们更信任Kuki。这些发现提供了针对自闭症用户的新型人与chatbot互动模型的见解,以通过陪伴和社交联系来支持他们。
贸易/器械名称:Xeleris V 处理和审查系统 法规编号:21 CFR 892.2050 法规名称:图片存档和通信系统 监管类别:II 类 产品代码:LLZ 日期:2020 年 8 月 13 日 收讫日期:2020 年 8 月 18 日 亲爱的 Alexandra Lifshits: 我们已审查了您根据第 510(k) 条提交的上市前通知,该通知表明您有意销售上述器械,并已确定该器械与在 1976 年 5 月 28 日(医疗器械修正案颁布日期)之前在州际贸易中合法销售的同类器械或已根据《联邦食品药品和化妆品法案》(法案)的规定重新分类的器械基本等同,且无需获得上市前批准申请(PMA)批准。因此,您可以营销该器械,但须遵守该法案的一般控制规定。虽然本函将您的产品称为设备,但请注意,一些已获准的产品可能是组合产品。位于 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm 的 510(k) 上市前通知数据库可识别组合产品提交。该法案的一般控制条款包括年度注册、设备列表、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不会评估与合同责任担保相关的信息。但我们提醒您,设备标签必须真实且不得误导。如果您的设备被归类(见上文)为 II 类(特殊控制)或 III 类(PMA),则可能会受到其他控制。影响您设备的现有主要法规可在《联邦法规》第 21 篇第 800 至 898 部分中找到。此外,FDA 可能会在《联邦公报》上发布有关您设备的进一步公告。请注意,FDA 发布实质等效性判定并不意味着 FDA 已判定您的设备符合该法案的其他要求或其他联邦机构管理的任何联邦法规和规章。您必须遵守该法案的所有要求,包括但不限于:注册和登记(21 CFR 第 807 部分);标签(21 CFR 第 801 部分);医疗器械报告(医疗器械相关不良事件报告)(21 CFR 803)
运用数学游戏应用进行数字化游戏化学习对四年级学生计算能力的影响 刘濝濢 -Bei LIU a* , Alex Wing Cheung TSE b* 香港大学教育学院,香港 a* u3598295@connect.hku.hk; b* awctse@hku.hk 摘要:计算能力是小学数学学习中必不可少的素质,事实证明,通过游戏化应用进行学习可以提高学生的数学学习成绩,从而有利于发展他们的计算能力。计算能力是数学核心技能之一,可以通过不断的计算练习来提高。然而,目前关于在小学使用运用数学游戏应用进行数字化游戏化学习 (DGBL) 对发展学生计算能力的影响的研究还很少。因此,本项准实验研究共有78名学生参与,旨在评估通过iPad进行DGBL与数学游戏应用“口算英雄”对中国大陆一所主流学校四年级学生计算能力的可能影响。实验班将数学游戏应用融入为期四周的课堂活动中,实验组和对照组均采用标准化计算能力测试:Abilita diCalcoloz计算能力-记忆与训练第6-11组(Cornoldi等,2002)进行前测和后测。采用方差分析的数据分析结果显示,在数学课堂上使用iPad上的数学游戏应用学习时,学生的计算能力存在显著差异,四年级实验组(n=40)与对照组(n=38)的整体计算能力存在显著差异。换句话说,我们发现,在使用数学游戏应用进行计算练习后,学生更有可能获得更好的计算能力,尤其体现在计算速度更快、错误率更低方面。然而,在数值知识方面没有显著差异,使用这种数学游戏应用程序学习可能不会导致获得更多的数学知识。这项研究为小学数学教育者和教师提供了一个现实的视角来了解使用数学游戏应用程序学习的潜力:它可以成为提高四年级学生计算能力的有效工具。该项目的第二阶段是探索研究结果背后的原因,揭示使用数学游戏应用程序进行 DGBL 的可能因素,这些因素可能会促进计算能力的某些方面。提出了将 DGBL 融入小学数学课堂的进一步建议。关键词:基于数字游戏的学习、计算能力、数学游戏 1。引言:学生的计算能力是指理解数字之间规律和相对量,并以更灵活的方式进行数字运算(加、减、乘、除)的能力(Feigenson 等,2004;Tall 和 Dehaene,1998)。计算能力对于小学阶段的数学成绩至关重要(Cowan 等,2011)。与不同领先国家的小学数学课程类似,根据中国大陆最新的课程标准,四年级学生必须掌握四种运算(加、减、乘、除),并且需要不断练习计算能力以找到更简单的解决方案(中华人民共和国教育部,2022)。学生的表现和
HONORS & AWARDS Honorable Mention, SIOP Owens Scholarly Achievement Award (Best Paper) for 2020 Carter et al., Understanding job satisfaction in the causal attitude network (CAN) model European Association for Work and Organizational Psychology (EAWOP) Best 2019 Practitioner Poster Finalist for Harris et al., Applicant Reactions to Ideal Point Measures of Personality Herbert Zimmer Award for Research Scholarship 2018 University of Georgia, I-O心理学系Donald L.授予杰出硕士论文奖学金2018年佐治亚大学,I-O心理学系DAN MACK研究奖与个体差异和选择有关的研究2017年佐治亚大学I-O心理学系
