摘要 - 阿尔茨海默氏病(AD)是痴呆症的最常见形式。轻度认知障碍(MCI)是描述前驱AD的阶段的术语,代表了早期AD诊断中的“危险因素”,这是由于老龄化引起的正常认知能力下降。脑电图(EEG)已被广泛研究以进行AD表征,但可靠的早期诊断继续提出挑战。这项研究的目的是使用EEG衍生的功能图像和深度学习技术引入AD患者,MCI受试者和年龄匹配的健康对照组(HC)受试者之间进行分类的新型方法。将141名年龄匹配受试者(52 AD,37 MCI,52 HC)的EEG记录转换为2D灰度图像,代表21 EEG通道之间的Pearson相关系数和距离LEMPEL-ZIV复杂性(DLZC)。每种特征类型都是从原始记录中分割的1s,2s,5s和10s的EEG时期计算的。CNN体系结构ALEXNET已修改并用于这项三向分类任务,并使用70/30拆分进行训练和验证,并使用每个不同的时期长度和EEG衍生的图像进行验证。使用来自10S时期的DLZC衍生图像作为模型的输入获得了73.49%的最大分类精度,但使用从Pearson相关系数和5S时期获得的图像达到了98.13%的分类精度达到98.13%。
从脑结构MRI和年代年龄估计的大脑年龄之间的抽象差异与广泛的神经认知失误有关。大脑年龄估计的性能在很大程度上取决于预定义或手工制作的功能。尽管已经提出了基于3D卷积神经网络(CNN)方法,但它们需要高计算成本,大记忆负载和众多图像。将预先训练的2D CNN耦合用于转移学习的转移学习与建立的相关性向量机进行回归方法可以极大地增强模型的能力。采用了几种重要策略,包括特征传递学习,3D特征串联和降低维度。估计的大脑年龄是通过594个正常健康老年人(50 - 90岁)的结构磁共振成像(SMRI)建模的。我们提出并表现出预先训练的Alexnet作为可靠的特征提取器。此外,通过应用3D功能串联和减少数据,可以避免开发3D CNN的可观成本。所提出的方法以旧受试者的平均绝对误差为4。51年,可实现出色的性能。预测的大脑年龄也表现出高测试可靠性(类内相关系数为0.979)。对所提出模型的有效性和鲁棒性进行了充分的研究。所提出的方法可以与这些最先进的方法竞争甚至胜过表现,并且功能转移学习策略可以将新的观点引入一些具有预定义或手工制作的功能的知名脑周龄预测模型。
尽管磁共振成像 (MRI) 等诊断成像技术的进步使人们对阿尔茨海默病 (AD) 的诊断和治疗有了更深入的了解,但医疗专业人员仍然需要分析图像,这是一个耗时且容易出错的过程。借助神经网络模型,可以更准确、更有效地做出诊断。在本研究中,我们比较了三种著名的基于 CNN 的算法(AlexNet、Faster R-CNN 和 YOLOv4)的性能,以确定哪一种算法在对 AD 患者的脑部 MRI 扫描进行多类分类时最准确。所使用的数据集来自 Kaggle,包含 6400 个训练和测试 MRI 图像,分为四个类别(非痴呆、非常轻度痴呆、轻度痴呆和中度痴呆)。中度痴呆类别的代表性极低。为了获得更准确的结果,通过数据增强将图像添加到该类别中。实验是使用 Google Colab 的 Tesla P100 GPU 进行的。迁移学习应用于所有三个预训练模型,并根据各自的参数调整数据集。增强后,AlexNet 具有最高的 mAP(平均准确率),100% 的时间检测到感兴趣的对象,而 YOLOv4 和 Faster R-CNN 的 mAP 分别为 84% 和 99%。然而,YOLOv4 在混淆矩阵上表现最佳,尤其是对于 ModerateDemented 图像。正如我们的实验所揭示的,像 YOLOv4 这样的单阶段检测器比像 Faster R-CNN 这样的两阶段检测器更快、更准确。我们的研究成功实现了这些模型,并为医学图像诊断做出了宝贵贡献,为未来的研究和开发开辟了道路。