摘要 - 这项研究提议实施基于卷积神经网络的面部情感识别系统,以实时检测情绪,旨在优化工作场所环境并提高组织生产力。评估了六种深度学习模型:标准CNN,Alexnet,VGG16,InceptionV3,Resnet152和Densenet201,Densenet201实现了最佳性能,精度为87.7%,召回96.3%。该系统显示关键绩效指标(KPI)的显着改善,包括减少数据收集时间的72.59%,诊断时间降低了63.4%,工作满意度增加了66.59%。这些发现突出了深度学习技术对工作场所情感管理的潜力,实现了及时的干预措施,并促进了更健康,更有效的组织环境。
为了培训分类器,我们首先查找了一些成功的分类器实现,例如Alexnet(旧),Inception-V1,V2,V2,V3,V4,V4(Google Net),残留网络,Inception-Resnet v1,v2,v2。试图实现这些模型,我们很快意识到它们对于我们的情况来说太复杂了,因为它们大多数是为Imagenet数据集设计的,该数据集的像素维度比我们的32x32图像大得多。因此,这个想法是遵循这些方法的结构,但将其优化到CIFAR数据集。首先,我们没有设法按照状态方法来制定有效和准确的模型,因为它们的精度非常缓慢,几乎没有达到40%。实际上,我们仅使用几个卷积层,合并层,批归归式化和恢复就可以更快,更准确。也就是说,使用这种简单的方法(类似于Alexnet),我们仅在几分钟内就达到了40%左右(时期= 10)。另一方面,为了避免消失的梯度问题,并能够进一步扩展我们的网络(更深入地),我们选择实施与所研究论文中的网络型模型相比,它的不同。这个想法是在块和块残差块中施加2-2卷积层,并重复每个块3次,以将它们求和以前的结果。块后,我们应用了一个还原模块,以使用步幅= 2降低图像的大小,并增加(翻倍)特征图的数量,然后再次将其添加到块的序列中。有关视觉表示,请参见图1。请注意,由于图像的大小已经相对较小(32x32),因此在模型的茎部分进行任何形式的还原/池很难,因为它很容易导致边缘损失。因此,在茎部分(在残留块之前),我们仅在原始图像上应用1 x 1卷积以生成相同大小的特征图。在第二个残留块的末尾应用一个最大池层层,以进一步降低图像的空间尺寸,然后再应用最终完全连接的层。
机器学习 (ML) 算法已应用于医学成像,其在医学领域的使用日益增多。尤其是深度学习 (DL),已证明在图像评估和处理方面更为有效。深度学习算法可能有助于并简化其在泌尿科成像中的使用。本文介绍了如何创建用于泌尿科图像分析的卷积神经网络 (CNN) 算法。深度学习是 ML 的一个分支,包括多层神经网络。卷积神经网络已广泛应用于图像分类和数据处理。1 它首先由 Krizhevsky 等人应用于图像分类。2 他们在 2012 年 ImageNet 大规模视觉识别挑战赛 (ILSVRC) 中凭借名为 AlexNet 的深度 CNN 赢得了比赛,该比赛由 120 万张日常彩色图像组成。3 在另一个 CNN 模型中,Lakhani 等人 4 证明他们
抽象目的:在牙科手术之前,使用手动射线照片来计划治疗时间并确定骨骼成熟度。本研究旨在使用不同的深度学习方法来确定手工射线照片的性别。方法:预先处理了1044个个体(534名男性和510名女性)的左手射线照相仪,以阐明图像并调整对比度。在性别分类问题中,Alexnet,VGG16和VGG19转移学习方法都被用作单独的分类器,并将这些方法从这些方法中获取并赋予了支持向量机(SVM)分类器。结果:结果表明,图像分析和深度学习技术在性别确定方面提供了91.1%的精度。结论:手工射线照相表现出性二态性,可用于性别预测。关键字:深度学习; İmage分析;手动X光片;性别确定
先前的论点意味着,在物体识别方面表现良好的网络本身并不是解决视觉皮层如何工作的问题的解决方案,尽管它们可能会有所帮助。神经科学的最新趋势是将视觉皮层中神经元的活动与使用反向传播训练的 RELU 网络(例如 AlexNet)中单元的活动相匹配。在这个优化过程中报告的合理一致性令人鼓舞,但在声称这些网络可能导致皮层可信模型之前还有很长的路要走。我们需要澄清 RELU 非线性的生物物理相关性是什么,它们在视觉皮层中的位置,权重在哪里,它们是如何修改的,以及脉冲神经元的活动如何映射到当今深度网络的静态单元中。更重要的是,反向传播和标记数据的批量学习几乎肯定在生物学上是不可信的。因此,我们需要用基于已知生物物理学的在线学习规则取代梯度下降
人工智能(AI)是利用大数据、深度学习算法、云计算等技术研究类脑智能的学科[1],即利用机器解决人类大脑能够解决的问题。人工智能的发展经历了诞生、停滞和复苏的阶段。数据、算法和计算能力是人工智能应用发展的三大关键驱动力,推动了人工智能的快速发展。物联网、社交媒体和移动设备的快速扩张和广泛使用,导致全球生成和存储的数据量急剧增加,为深度学习训练和计算机视觉算法模型提供了源源不断的素材。LeNet 等神经网络模型和优化算法,以及随后的 AlexNet、ResNet、GAN 等改进,不断突破算法精度的界限[2,3]。数据处理速度不再是人工智能发展的瓶颈,而是进一步发展的强大驱动力。随着神经网络的逐步进化,人工智能的计算能力和计算能力正在不断提高,人工智能的发展也因此而蓬勃发展。
摘要 — 脑肿瘤越来越普遍,其特征是脑内异常组织不受控制地扩散,全球每年诊断出近 700,000 例新病例。磁共振成像 (MRI) 通常用于诊断脑肿瘤,准确分类是一项关键的临床程序。在本研究中,我们提出了一种使用自定义迁移学习网络从 MRI 图像中对脑肿瘤进行分类的有效解决方案。虽然一些研究人员已经采用了各种预训练的架构,例如 RESNET-50、ALEXNET、VGG-16 和 VGG-19,但这些方法通常存在高计算复杂度的问题。为了解决这个问题,我们提出了一个自定义的轻量级模型,该模型使用基于卷积神经网络的预训练架构,复杂度降低。具体而言,我们采用带有额外隐藏层的 VGG-19 架构,这降低了基础架构的复杂性,但提高了计算效率。目标是使用新方法实现高分类准确率。最终结果表明分类准确率为96.42%。
摘要 深度神经网络 (deep NN) 的性能取决于大量需要训练的权重参数,这是一个计算瓶颈。更深层次的架构日益增长的趋势对资源受限设备上的训练和推理方案造成了限制。剪枝是去除深度 NN 中不重要的参数并使其更容易在资源受限的设备上部署以供实际应用的重要方法。在本文中,我们提出了一种基于启发式的新型滤波器剪枝方法来自动识别和剪枝不重要的滤波器,并加快资源有限设备上的推理过程。不重要的滤波器的选择由一种新颖的剪枝估计器 (c) 进行。所提出的方法在各种卷积架构 AlexNet、VGG16、ResNet34 和数据集 CIFAR10、CIFAR100 和 ImageNet 上进行了测试。在大规模 ImageNet 数据集上的实验结果表明,VGG16 的 FLOP 可降低高达 77.47%,实现 5 倍推理加速。与其他最先进方法相比,更流行的 ResNet34 模型的 FLOP 降低了 41.94%,同时保持了具有竞争力的性能。
语言模型是从一个简单的问题中诞生的:“我们可以教一台机器理解和生成人类语言吗?”1950 - 60年的十年:艾伦·图灵(Alan Turing)已经通过著名的图灵测试提出了这个想法,以测量机器是否可以模仿人类的智能。 div>1980-90:出现了第一个基本神经网络。 div>连接节点的层层用于解决数据分类或模式识别等问题。 div>2010年:由于计算能力和大量数据,深度学习繁荣。 div>示例:诸如Alexnet之类的深神经网络彻底改变了图像处理,激发了文本分析的改进。 div>2017年:革命性的变化带有文章“您需要的所有注意力”(Google),介绍了变形金刚,LLM的基础。 div>变形金刚允许关注最相关词的文本,从而大大提高了预测质量。 div>2018年至今:对GPT(OpenAI)和Bert(Google)等模型进行了培训,这些模型是使用大量数据培训的LLMS,可以理解和生成更精确的语言。 div>
人工智能的计算和能源成本的爆炸性增长引起了人们对传统电子处理器的替代计算方式的兴趣。使用光子代替电子的光子处理器承诺具有超低潜伏期和功耗的光学神经网络。但是,现有的光神经网络受其设计的限制,尚未达到现代电子神经网络的识别精度。在这项工作中,我们通过将并行的光学计算嵌入到平面相机光学器件中,在捕获过程中执行神经网络计算,然后在传感器上记录之前。我们利用大型内核,并提出了通过低维度重新聚体化学到的空间变化的卷积网络。我们使用具有角度依赖性响应的纳米光子阵列在相机镜头内实例化。与大约2K参数的轻质电子后端结合使用,我们可重新配置的纳米含量神经网络可在CIFAR-10上获得72.76%的精度,超过Alexnet(72.64%)(72.64%),并将光学神经网络推进到深度学习时代。