摘要 尽管工业 4.0 的概念和技术仍在开发和采用中,但过去十年的经验教训有助于形成工业 5.0 的概念——即工业领域的下一次“革命”。尽管工业 5.0 与工业 4.0 有许多共同的概念,但它具有三个主要要素,即以人为本、可持续性和弹性。在本文中,我们介绍了一种数字化制造平台架构,该架构扩展了工业 4.0 范式,以实现基于人工智能的决策支持,并为工业 5.0 提供必要的可信度和以人为本的元素。所提出的架构有助于实现平衡,即从以人工智能为中心的数字化中获得可感知的收益,同时在关键决策活动中保留人类的作用。关键词 1 工业 5.0,值得信赖的人工智能,以人为本。
F1-1 Q19, Q18, Q17, Q1, Q3 0.78 F1-2 Q19, Q18, Q17, Q1, Q2, Q3 0.79 F1-3 Q19, Q18, Q17, Q1 0.80 F1-4 Q19, Q18, Q17 0.81 F1 使用基于人工智能的教育技术的自我效能 F2-1 Q25, Q24 0.88 F2 基于人工智能的教育技术与人类建议/推荐 F2-2 Q25, Q24, Q8 0.71 F1 + F2 Q19, Q18, Q17, Q25, Q24 0.75 F3 Q14, Q15, Q16 0.69 F3 使用基于人工智能的教育技术相关的焦虑 F4 Q10, Q9, Q12, Q11 0.66 F4 基于人工智能的教育技术缺乏人性化 F5-1 Q5, Q6, Q2 0.69 F5-2 Q5, Q6, Q2, Q7 0.68 F5-3 Q5, Q6, Q2, Q7, Q1, Q3, Q4 0.75 F5 对基于人工智能的教育技术的感知优势 F5-4 Q5, Q6, Q2, Q13 0.52 F6 Q23, Q22, Q21 0.67 F6 提高对基于人工智能的教育技术的信任度的首选方式 F7-1 -Q13, Q7 0.27 F7-2 -Q13, Q7, -Q12 0.45
1 牛津大学材料系,牛津,OX1 3PH,英国 2 德累斯顿先进电子中心(cfaed),德累斯顿工业大学化学与食品化学学院,德累斯顿,01069,德国 3 德累斯顿莱布尼茨聚合物研究所,德累斯顿,01069,德国 4 香港大学化学系和合成化学国家重点实验室,香港,中国 5 牛津大学无机化学系,牛津,OX1 3QR,英国 6 主要联系人 7 这些作者贡献相同 *通信地址:xinliang.feng@tu-dresden.de **通信地址:l apo.bogani@materials.ox.ac.uk 摘要 开壳层分子自由基可能是分子量子信息和量子传感技术的关键。它们的形态对量子特性的影响始终未知,阻碍了合成策略的发展。在此,我们使用基于间醌二甲烷的三种相关自由基建立了形态和量子特性之间的联系。我们揭示了π共轭骨架和侧基对自旋翻转和量子相干时间的作用。确定了温度区域,其中分子或溶剂的不同结构部分成为主要的退相干通道。在室温下获得的记录量子相干值仍然远低于自由基的固有极限,我们讨论了优化量子性能的方向。自由基,量子特性,电子顺磁共振,石墨烯。
