本文研究了安全至关重要的社会环境中日益增长的算法控制的张力 - 人类认知谬误的动力与AI的概率类型的兴起,主要是以大语言模型(LLMS)的形式形式。尽管人类认知和LLM都表现出固有的不确定性和偶尔的不可靠性,但对“奇异性”的某些未来视野在矛盾地辩护地倡导放弃对主要社会过程的控制 - 包括关键性过程 - 对这些概率的AI代理人,使这些概率的AI代理人的风险加剧了不可定制或“不可定制”的风险。作为替代方案,这里提出了一个“介导的控制”框架:一种更谨慎的替代方案,其中llm-agis从战略上被视为“元数据编程者”,以设计精致的基本确定性 - 等级 - 词汇和程序,或者,总的来说是确定性的,或一般而言。是这些算法或程序,在经典计算基础架构上以及在人类监督下执行,将要部署的系统基于人类的审议决策过程,这是关键系统和过程的实际控制者。这构成了一种利用算法创新的创造力的方法,同时保持了本质的可靠性,可预测性和人类对由如此生产的算法控制的过程的责任。框架强调了LLM-AGI与其设计算法之间的劳动分裂,严格的验证和验证协议作为安全算法生成的条件以及算法的介导应用。这种方法不能保证解决先进AI的挑战,但它被认为是一种更加与人类的,风险降低的,最终更有利于将AGI整合到社会治理中的更有益的途径,这可能会导致更安全的未来,同时维护人类自由和机构的基本领域。
替代辅助进化算法(SAEAS)来解决昂贵的优化问题。尽管SAEAS使用使用机器学习技术近似解决方案评估的替代模式,但先前的研究并未充分研究SAEAS中搜索性能和模型管理策略的Sherrotage模型准确性对搜索性能的影响。这项研究分析了替代模型准确性如何影响搜索绩效和模型管理策略。为此,我们构建了一个具有可调节精度的伪气管模型,以确保在不同的模型管理策略之间进行公平比较。我们比较了三种模型管理策略:(1)预选前(ps),(2)基于个人(IB)和(3)基于一代的基准基准问题的基于生成(GB)的基线模型,而基线模型不使用替代物。实验结果表明,较高的替代模型精度可提高搜索性能。但是,影响根据所使用的策略而变化。具体来说,随着估计精度的提高,PS证明了性能的明显趋势,而当准确性超过一定阈值时,IB和GB表现出强大的性能。模型策略
摘要:人口增长,再加上工业和农业发展,导致对淡水供应的需求增加。对于缺水稀缺的国家,淡化构成了解决此问题的唯一可行解决方案。反渗透(RO)技术已被广泛使用,因为膜材料已升级并降低了成本。现在,RO是最重要的技术,用于化下不同类型的水,例如海水,咸水和自来水。但是,它的设计至关重要,因为许多参数都参与获得良好的设计。大量使用RO鼓励建立一种促进设计过程的程序,并有助于获得最佳性能RO脱盐系统。本文提供了一个分为三个部分的过程:(1)对RO参数进行分类; (2)按一定顺序选择pa-armeters,然后通过12个步骤进行计算过程; (3)然后在RO系统分析(ROSA)软件上插入所选参数和获得的值。然后,通过创建一个使用ROSA的RO系统设计阶段遵循的算法图表来总结这些点。然后以拟议列表上的一个示例进行验证以验证该过程,并进行了对参数的不同值进行比较。这项比较研究的结果表明,选择不同的参数会影响RO系统的生产力。此外,每个设计都有特定的最佳参数集,这取决于用户设置的限制。
摘要:这项研究是关于在Paddleocr中实施Yolo算法和机器学习的几个方面。提及讨论了这种技术集成以及他们在实现现实世界情景中完成任务和预期使用的方式。本文通过广泛分析文献并进行故意实验来实现这一目标。在本文中还捕获了有关算法有效性和挑战的见解。当代计算机视觉系统利用Yolo(您只看一次)和Paddleocr等有效的机器学习方法在几乎每个工业领域都扩展了。本文涉及这些算法在广泛的程序中的整合以及对实际领域的结果影响。本文对最新文献和实验分析进行了系统性阅读,以提出其用法的这一重要方面,未来的挑战及其前景。关键字:Yolo算法,Paddleocr,机器学习,对象检测,光学特征识别,深度学习。
8 School of Management 1 Annamacharya Institute of Technology and Sciences, 2 Coolsoft LLC, 3 Sree Saraswathi Thyagarajan College, 4,5 Shri Nehru Maha Vidyalaya College of Arts and Science, 6 Kaamadhenu Arts and Science College, 7 Sree Narayana Guru College, 8 BBD University Abstract: This paper explores an advanced solution for enhancing quality control in Printed电路板(PCB)制造是通过集成Yolo(您只看一次)对象检测算法的制造。该系统具有传送带,直流电动机和高分辨率摄像头,用于实时识别和移动PCB上缺陷的定位。Yolo算法过程捕获了图像,有效地识别了各种缺陷,例如焊接问题和组件未对准。通过传送带和直流电动机之间的无缝集成来实现对检查过程的精确控制,从而提高了缺陷检测的速度和准确性。识别缺陷后,该系统包括一种机制,可以将有缺陷的PCB与生产线分开。有缺陷的PCB通过传送带将其改编为指定区域,以确保在制造过程中仅进行高质量的PCB。这种自动化方法可降低人类干预,可显着提高生产效率,降低制造成本并提高整体PCB质量。所提出的系统展示了尖端图像处理技术与强大的机械组件之间的协同作用,为PCB制造关键字中的缺陷检测和隔离提供了全面的解决方案:PCB,DC发动机,PCBIONS,PCBIONS,机器学习,机器学习,工业,缺陷。
Bluesky是一种新兴的“ Twitter”和Sectralized社交媒体网络,具有新颖的功能和前所未有的数据访问。本文提供了其相互作用网络的特征,研究了500万用户的政治倾向,两极分化,网络结构和算法策展机制。数据集跨越了该网站于2023年2月至2024年5月的第一个版本。我们调查了蓝军网络的层次,喜欢,喜欢,重新发布并关注层。我们发现所有网络的特征都以重尾分布,高聚类和短连接路径(类似于其他较大的社交网络)。Bluesky介绍了Feeds - 为用户创建和由用户创建的Algorithmic内容推荐人。我们分析了所有提要,并发现尽管已经创建了大量自定义供稿,但用户对它们的吸收似乎受到限制。我们分析了布鲁斯基用户共享的超链接,并且从他们共享的新闻来源的政治倾向方面没有发现两极分化的证据。他们主要共享左中央新闻来源,几乎没有与可疑新闻来源相关的链接。与统一的政治意识形态相反,我们通过研究与以色列 - 巴勒斯坦冲突相关的观点来发现重要的基于问题的分歧。出现了两个明确的同质群集:亲帕勒斯坦的声音超过了亲以色列的使用者,并且该比例有所增加。我们结论是,蓝军在其网络结构上与现有和较大的社交媒体网站的网络结构非常相似,并为社会科学家,网络科学家和政治科学家提供了前所未有的研究机会。
出色的研究帮助。†耶鲁大学,dirk.bergemann@yale.edu‡mit斯隆管理学院,bonatti@mit.edu§耶鲁大学,nick.wu@yale.edu
分子组成数据是从气相色谱和质谱分析的现有结果中得出的,这两种技术用于分离和识别混合物中的成分。这些算法用于识别每种威士忌的原籍国及其五个最强的音符。作者然后将算法的结果与11位专家小组的结果进行了比较。
在本文中,我们通过分析不完美的监测案来为后一个研究做出了贡献。以前的研究重点是完美监控的情况,因为定价算法通常在市场(例如亚马逊)中使用,那里的每个卖方都可以实时监视竞争对手的价格,并且因为竞争当局强调了这样的市场更容易受到勾结的影响。3然而,理论表明,即使在不完善的监控下,也可能进行勾结,并且算法也越来越多地用于竞争对手的策略不容易观察的市场。一个例子是财务市场,代理商通过隐藏噪音交易者来利用其内部信息。4另一个例子是电力市场。5因此,重要的是研究算法勾结是否可以观察到总成果(例如市场价格)而不是个人行为时。6
x a 1 + a 2,x a 1 + 2 a 2 a 2 a 2,a 2,x a 1,x a 1,x a 2,x a 1 + a 1 + a 1 + a 1 + a 1 + 2 a 2 a2⟩,⟨Ha 1 + a 2 h a 2 h a 2,x a 2,x a 1,x a 2,x a 2,x a 2,x a 1 + a 1 + a 2 a 2,x a 2,x a 1 + a 2,x a 1 + 2 a 2 a 2 a 2 a 2 a 2 a 2 r>