摘要。本文旨在直接分析量子计算算法的能力,特别是 Shor 和 Grovers 算法,分析其时间复杂度和强力能力。Shor 算法使我们能够以比传统系统快得多的速度找出大素数的素因数。这对依赖于传统算法无法计算大素数素因数的经典密码系统构成了威胁。Grover 算法使我们的计算机系统搜索能力提高了一倍,这将对密码系统密钥和哈希的强力能力产生重大影响。我们还分析了这些算法对当今经典密码系统的影响,以及可以对安全算法进行的任何重大改进,以使其更安全。
巴黎萨克雷大学博士论文,在巴黎萨克雷高等师范学院编写,博士学校 n°579 机械和能源科学、材料和地球科学 (SMEMAG) 博士专业:机械工程论文在卡尚 (Cachan) 提交和答辩, 2019 年 12 月 5 日,作者:Yassir AREZKI 评审团组成:Jean-François Fontaine勃艮第大学教授 报告员 Denis Teissandier 波尔多大学教授 报告员 Jean-Marc Linarès 艾克斯马赛大学教授 考官 Fengzhou Fang 都柏林大学和天津大学教授 考官 Olivier Bruneau 巴黎南大学教授 考官 Nabil Anwer 巴黎大学教授-南方论文主任 Hichem Nouira 研究员(HDR 博士),LNE/Cnam 联合论文主任 Charyar Mehdi-Souzani MCF,巴黎大学 13 论文联合导师 Muriel Thomasset 研究员,同步加速器 SOLEIL 客座
人工智能 (AI) 和机器学习 (ML) 在医疗保健领域的融合彻底改变了疾病诊断,为早期发现、提高准确性和个性化治疗提供了潜力。本文评估了各种 ML 算法在诊断多种疾病(包括心血管疾病、癌症、神经系统疾病和传染病)方面的有效性。通过分析关键的监督和非监督学习算法(如支持向量机、随机森林、神经网络和 K 均值聚类),本研究探索了它们在临床环境中的应用、优势和局限性。评估指标包括准确度、精确度、召回率和 AUC,用于评估这些算法的性能。本文还强调了人工智能诊断面临的重大挑战,例如数据质量、模型的可解释性、道德考虑以及与临床工作流程的集成。最后,它探讨了人工智能在疾病诊断中的未来前景,强调了深度学习、个性化医疗和人工智能与人类协作模型的进展。研究结果强调了人工智能在提高诊断效率方面的变革作用,同时也承认需要进一步研究、道德监督和监管框架以确保安全和公平实施。
在2010年代中期引入推荐算法标志着社交媒体企业的转折点。能够分析用户行为和偏好,算法授权有影响力的人和在线品牌通过其引人入胜的内容吸引更多受众。这种转变导致了新型社交媒体成功案例的出现,这是有效的内容营销策略和有机影响者的种植所推动的。
近来,使用机器学习模型和技术预测经济变量的情况越来越多,其动机是它们比线性模型具有更好的性能。尽管线性模型具有相当大的解释能力的优势,但近年来,人们加大了努力,使机器学习模型更具解释性。本文进行了测试,以确定基于机器学习算法的模型在预测非正规经济规模方面是否比线性模型具有更好的性能。本文还探讨了机器学习模型检测到的最重要的这种规模的决定因素是否与文献中基于传统线性模型检测到的因素相同。为此,从 2004 年到 2014 年,收集并处理了 122 个国家的观测数据。接下来,使用 11 个模型(四个线性模型和七个基于机器学习算法的模型)来预测这些国家非正规经济的规模。使用 Shapley 值计算了预测变量在确定机器学习算法产生的结果中的相对重要性。结果表明:(i)基于机器学习算法的模型比线性模型具有更好的预测性能;(ii)通过 Shapley 值检测到的主要决定因素与文献中使用传统线性模型检测到的主要决定因素一致。
•本课程旨在针对研究生和高级本科生。•课程将快节奏。•联系(alperen.ergur@utsa.edu)如果您有疑问是否有招生。•本课程不会为您提供数据科学家的工作,但是它会使您更加更好。只是不要说出我的话 - 来倾听行业专家,了解该课程如何使您在学术和行业角色中受益。
概述:构成机器人规划,州估计和控制的基础的算法简介。主题包括优化,运动计划,不确定性表示,卡尔曼和粒子过滤器以及点云处理。作业专注于编程机器人在模拟中执行任务。
结果,他们必须能够获得高效、优质和有效的服务。不幸的是,由于皮肤科医生短缺问题日益严重,北美大多数患者的情况并非如此,平均等待专业医生的时间超过两个月。因此,越来越多的医疗专业人员提供皮肤科服务,以满足这种快速增长的需求。识别皮肤病变的性质在很大程度上依赖于护理提供者的专业知识。然而,由于皮肤图像分析和分类的复杂性,这个过程通常对即使是最有经验的专家来说也很有挑战性,因此会产生大量不必要的活检标本。患者接受侵入性手术的经济负担和身体创伤,再加上皮肤癌病例的低假阳性率,使得有必要采用新一代工具来支持准确的、基于证据的临床决策。人工智能如何支持这一日益增长的需求?利用技术的力量代表着对色素性皮肤病变的分析和诊断有了巨大的进步。人工智能 (AI) 技术有能力彻底改变医疗专业人员为患者提供最佳医疗结果的方式。机器学习能力成为战略技术盟友,可根据对数百万先前分类的病例的累积分析提供高度准确的决策支持。旨在与该领域的主要利益相关者密切合作的全球举措更好地展示了 AI 在皮肤病学中的实施潜力。可以通过该领域不同研究领导者的累积参与来研究和促进 AI 算法的力量和特异性,就像 ISIC 图像分类挑战赛所鼓励的那样。
摘要:遗传算法(GA)比其他方法(例如梯度下降或随机搜索)更有用,尤其是对于具有许多局部最小值和Maxima的非不同的函数,例如梯度下降或随机搜索。标准GA方法的缺点之一是需要设置许多超参数,并且基于复杂规则而不是更直观的模糊规则,选择压力是基于复杂的规则。通过模糊逻辑调整此类参数的遗传算法的变体,以使参数更新原理更容易解释,构成模糊遗传算法(FGAS)的类别。本文提出了对具有N个特性和自动生成规则的两个相对模糊遗传算法(FGA)的修改,以及旨在改善模拟运行时的计算优化。在基准功能(Ackley,Griewank,Rastrigin和Schwefel)上评估了修改,并且选择了每个修改方法的最佳设置(即成员资格功能,术语数,T-norm和t-conorm)。将结果与标准GA和粒子群优化(PSO)进行了比较。结果表明,FGA方法可以使用缓存和最近的邻居方法进行优化,而不会失去准确性和收敛性。证明这两种修改后的方法在统计学上的表现明显比基线方法差。结果,我们提出了对现有两种算法的两种优化:通过缓存和测试其性能,通过规则生成和最近的邻居估算进行外推。
未经Addepar事先书面许可,该信息不可用来创建衍生作品,或验证或纠正其他数据或信息。For example (but without limitation), the Information may not be used to create indexes, databases, risk models, analytics, software or in connection with the issuing, offering, sponsoring, managing or marketing of any securities, portfolios, financial products or other investment vehicles utilizing or based on, linked to, tracking or otherwise derived from the Information or any other Addepar data, information, products or services.
