拥有精确有效的监测系统来评估河流状态的重要性在于其预测和应对可能导致洪水和溢出的极端天气事件的能力。与水有关的灾难,例如山洪洪水,可能会对基础设施,经济以及最重要的是对人口安全的影响。因此,高级河流识别系统的实施成为SIT(首字母或首字母缩写)的战略优先事项。本报告旨在概述通过图像在河流识别领域使用的最新技术,方法和方法。通过对专业文献的审查,将探索使用计算机视觉,遥感,人工智能以及其他相关学科的河流检测和跟踪学科的最新进展。此外,将解决在其他地区和组织中实施类似系统的成功案例和最佳实践。最终,本文将成为为其河流识别项目寻找最合适和最有效的解决方案的起点。此处收集的信息将为理解基于图像的河流监测系统的计划和执行中必须考虑的可能性,挑战和关键注意事项提供稳固的基础,以确保人口和自然环境的安全和福祉。这些要素来自各种信息和经验的来源。基于图像的河流识别系统的实施项目测量河床并确定溢流的风险是在必须全面考虑几个要素的情况下设定的。
因此,这些仍然是暴风雨的时期,这与新系统技术的出现相处。一年前,观察到荷兰必须采取措施才能掌握算法。同时,AI技术的动荡增长仍在继续。此外,生成AI的出现为通过新的AI应用程序进行了大规模实验提供了激励措施。在未来几年中,AI将与社会要素越来越深深地交织在一起。这是在规模和自然方面的结果,在更多和更新的风险中仍然难以评估。其长期影响也尚未完全理解。总的来说,到目前为止,国际政策响应已经决定性。它既关注传统的监督,又关注新的测试和控制形式,例如AI系统的安全性以及打击新的网络安全风险。同时
摘要算法偏见是教育环境中机器学习模型中的主要问题。但是,它尚未在亚洲学习环境中进行彻底研究,并且只有有限的工作才考虑了基于区域(亚国家)背景的算法偏见。作为解决这一差距的一步,本文研究了菲律宾一所大型大学的5,986名学生的人口,并根据学生的区域背景调查了算法偏见。大学在广泛领域的在线课程中使用了画布学习管理系统(LMS)。在三个学期的典范上,我们收集了4870万个学生在画布中活动的日志记录。我们使用这些日志来训练从LMS活动中预测学生成绩的二进制分类模型。表现最佳的模型达到0.75,加权F1得分为0.79。随后,我们根据学生区域检查了偏见的数据。使用三个指标进行评估:AUC,加权F1得分和MADD在所有人口组中均显示出一致的结果。因此,在年级预测中对特定学生群体没有观察到不公平。
在科幻电视剧《星际迷航:原初系列》的“末日决战”一集中,企业号的船员们访问了一对行星,这两颗行星已经进行了 500 多年的计算机模拟战争。为了防止他们的社会被毁灭,这两个星球签署了一项条约,战争将以计算机生成的虚拟结果进行,但伤亡人数将是真实的,名单上的受害者自愿报告被杀。柯克船长摧毁了战争模拟计算机,并受到谴责,因为如果没有计算机来打仗,真正的战争将不可避免。然而,战争持续这么久的原因正是因为模拟使两个社会免受战争的恐怖,因此,他们几乎没有理由结束战争。虽然基于科幻小说,但未来人工智能战场的威胁引发了人们对战争恐怖的道德和实际担忧。驱使各国采用致命自主武器系统 (LAWS) 的逻辑确实很诱人。人类是会犯错的、情绪化的、非理性的;我们可以通过 LAWS 保护我们的士兵和平民。因此,这种推理将 LAWS 构建为本质上理性的、可预测的,甚至是合乎道德的。杀手机器人,尽管名为杀手机器人,实际上会拯救生命。然而,这种逻辑是愚蠢的。如果人工智能战争专注于完善战争手段,而忽视战争的目的,那么它就会存在许多潜在的陷阱。就像在《星际迷航》中一样,无风险战争的诱惑力很强,但它会给那些最终不可避免地被杀死、致残和流离失所的人带来真正的后果。接下来,我认为 LAWS 的前景存在严重的道德问题,而这些问题是先进技术无法解决的。道德不能预先编程以适用于各种情况或冲突,而有意义的人为控制忽视了自动化偏见如何影响决策中的人机交互。军事实体和非政府组织都提出了有意义的人类控制的概念,特别是在致命决策中
人工智能 (AI) 和机器学习 (ML) 在医疗保健领域的融合彻底改变了疾病诊断,为早期发现、提高准确性和个性化治疗提供了潜力。本文评估了各种 ML 算法在诊断多种疾病(包括心血管疾病、癌症、神经系统疾病和传染病)方面的有效性。通过分析关键的监督和非监督学习算法(如支持向量机、随机森林、神经网络和 K 均值聚类),本研究探索了它们在临床环境中的应用、优势和局限性。评估指标包括准确度、精确度、召回率和 AUC,用于评估这些算法的性能。本文还强调了人工智能诊断面临的重大挑战,例如数据质量、模型的可解释性、道德考虑以及与临床工作流程的集成。最后,它探讨了人工智能在疾病诊断中的未来前景,强调了深度学习、个性化医疗和人工智能与人类协作模型的进展。研究结果强调了人工智能在提高诊断效率方面的变革作用,同时也承认需要进一步研究、道德监督和监管框架以确保安全和公平实施。
巴黎萨克雷大学博士论文,在巴黎萨克雷高等师范学院编写,博士学校 n°579 机械和能源科学、材料和地球科学 (SMEMAG) 博士专业:机械工程论文在卡尚 (Cachan) 提交和答辩, 2019 年 12 月 5 日,作者:Yassir AREZKI 评审团组成:Jean-François Fontaine勃艮第大学教授 报告员 Denis Teissandier 波尔多大学教授 报告员 Jean-Marc Linarès 艾克斯马赛大学教授 考官 Fengzhou Fang 都柏林大学和天津大学教授 考官 Olivier Bruneau 巴黎南大学教授 考官 Nabil Anwer 巴黎大学教授-南方论文主任 Hichem Nouira 研究员(HDR 博士),LNE/Cnam 联合论文主任 Charyar Mehdi-Souzani MCF,巴黎大学 13 论文联合导师 Muriel Thomasset 研究员,同步加速器 SOLEIL 客座
例子:矩阵加法:2n 2 +2n+1 O(n 2 ),矩阵乘法:2n 3 +3n 2 +2n+1 O(n 3 )算法斐波那契(a,b,c,n) { a:=0; b:=1; write(a,b); for i:=2 to n step 1 do { c:=a+b; 时间复杂度:5n-1 频率计数:O(n) a:=b; b:=c; write(c); } } 第一种方法:算法 Rsum(a,n): // 使用递归添加元素 { count:=count+1; // 对于 if 条件 if(n<=0) then count:=count+1; // 对于 return stmt return 0; else return Rsum(a,n)+a[n]; // 用于加法、函数调用和返回 } 时间复杂度: 2(对于 n=0)+ TRsum(n-1) 2+TRsum(n-1) => 2+2+TRsum(n-2) …….. n(2)+TRsum(0) => 2n+2 n>0 第二种方法: StatementNum 语句每次执行的步骤频率 n=0 n>0
已经开发了国际高级电视和红外观测卫星垂直声音(ATOVS)处理套件(IAPP),以检索来自ATOVS测量结果的大气温度,湿度,大气总臭氧,大气总臭氧和其他参数。检索这些参数的算法包含四个步骤:1)云检测和去除,2)ATOV测量值的偏置调整,3)回归检索过程,以及4)非线性迭代物理检索。九(3 3 3)相邻的高分辨率红外音器(HIRS)/3点观测,以及先进的微波炉响起的单位-A观测值重塑为HIRS/3分辨率,可用于检索温度效果,表面皮肤温度,总大气的冰酮和微层面表面和同样的湿度,表面皮肤温度,总大气的沸腾的表面,以及同样。atovs profle检索结果通过root平方平方的差异来评估反射仪观察条件。在1 km垂直分辨率下温度的检索准确性约为2.0 k,在本研究中,在2 km垂直分辨率下的露点温度为3.0–6.0 K。IAPP现在可供全球用户用于处理实时ATOV数据。
近来,使用机器学习模型和技术预测经济变量的情况越来越多,其动机是它们比线性模型具有更好的性能。尽管线性模型具有相当大的解释能力的优势,但近年来,人们加大了努力,使机器学习模型更具解释性。本文进行了测试,以确定基于机器学习算法的模型在预测非正规经济规模方面是否比线性模型具有更好的性能。本文还探讨了机器学习模型检测到的最重要的这种规模的决定因素是否与文献中基于传统线性模型检测到的因素相同。为此,从 2004 年到 2014 年,收集并处理了 122 个国家的观测数据。接下来,使用 11 个模型(四个线性模型和七个基于机器学习算法的模型)来预测这些国家非正规经济的规模。使用 Shapley 值计算了预测变量在确定机器学习算法产生的结果中的相对重要性。结果表明:(i)基于机器学习算法的模型比线性模型具有更好的预测性能;(ii)通过 Shapley 值检测到的主要决定因素与文献中使用传统线性模型检测到的主要决定因素一致。
