摘要 在图灵的“通用机器”之后,本文将直觉作为一个生成性概念和镜头来展现战后跨大西洋文化中人机关系的有效谱系。作为一种超越理性分析的感知、认识、预测和驾驭世界的方式,直觉对于适应我们当代的“算法条件”至关重要,在这种条件下,机器学习技术正在积极地重新分配人类和机器之间的认知,改变(非)人类经验的性质,并重新表达文化价值和欲望的问题。本文关注三个关键的历史时刻,使我们能够回顾性地瞥见英国和北美对我们与“新”技术不断变化的关系的兴趣和紧迫感的新兴凝聚—— 1) 20 世纪 50 年代:人工智能和控制论的诞生; 2)20 世纪 80 年代:个人电脑和软件文化的兴起;3)2010 年代:算法生活的开始。在每个时期,直觉的特定方面都表现出重要的作用,激发了我们与计算技术的情感和文化纠葛。虽然直觉在特定的历史关头获得了有效的牵引力,既是“人类”的本质定义,也是非人类的本质定义,但我认为,解决当前机器学习架构所引发的感官、社会政治、文化和伦理问题,需要适应内在的人机算法纠葛以及它们所居住和不断重塑的技术社会生态。
1。简介:“晶格数量的公式。。。”输入Pick的公式,Dedekind总和,Ehrhart多项式和计算复杂性。。。。。。。92 2。预定。Polyhedra的代数。 引入了欧拉的特征和其他重要估值。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 95 3。 在有理多面体中为整数点生成函数。 与每个理性多面体一起,我们将合理的函数联系起来,并证明了劳伦斯 - Khovanskii – Pukhlikov和Brion的定理。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。Polyhedra的代数。引入了欧拉的特征和其他重要估值。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。95 3。在有理多面体中为整数点生成函数。与每个理性多面体一起,我们将合理的函数联系起来,并证明了劳伦斯 - Khovanskii – Pukhlikov和Brion的定理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。100 4。生成功能的复杂性。有理多面体中整数点集的生成函数的生成函数具有“短”(在polyhedron的输入大小中)表示为有理函数。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。106 5。晶格点的有效计数。显示了在固定维度中计数整数点的多项式时间算法。。。。。。。。。。。。。。。。。。。。110 6。存在“本地公式”。有理多主中的整数点的数量可以表示为多层面部面积的线性组合与系数与系数的线性组合,仅取决于脸部多层的局部结构。。。。。。。。。。。。。。。。115 7。组合Stokes的公式及其应用。a mcmullen的定理被证明,并获得了具有中央对称方面的晶格晶状体和晶格多型的明确公式。。。。。。。。。。。。。。。。。。。。。。。。116
概述:构成机器人规划,州估计和控制的基础的算法简介。主题包括优化,运动计划,不确定性表示,卡尔曼和粒子过滤器以及点云处理。作业专注于编程机器人在模拟中执行任务。
Deleuze和Guattari所建议的形象异常异常,毫无疑问地响起了强大的回响,并在其书籍中乘以其含义。作为一种代表,它立即表现为著名的黄蜂 - 有机系统的运动。作为一个修辞的例子,这听起来像是德勒兹(Deleuze)用来描述他如何对其他作者的个人解释的奇怪表达的新公式:“我认为自己是从后面带一个作者并给他一个孩子的作者”(在德勒兹(Deleuze)1995年,第6期引用)。作为一个工作方向,它表明放弃了将不同领域划分的区别,以便整体面对思想。哲学文献已经讨论了如何将不同的系统投入沟通中,而艺术家也探索了这些可能性,表现出了不可能的变化。但是,我想在德勒兹语境中讨论的观点从德勒兹的写作中移开,重点关注婚礼概念的创造力和创造的潜力,转向异常的晦涩面。在其最大的恶魔方面,这种畸变涉及德勒兹的整个哲学,这只是婚礼的两个部分之一。换句话说,我想暗示,德勒兹的内在哲学有可能成为Antoinette Rouvroy和Thomas Berns(2013)的新形式的社会控制形式的概念基础。完全误解虚拟和内在的危险越来越近,以及质疑这种特殊异常的婚礼呼吁我们注意的责任。因此,绝对内在的时代一方面,一个异常的婚礼仍然是一个婚礼,因此它涉及我们可以将Deleuze定义为“两个之间”的区域,这是一个不确定性的区域,也许是一个创造力的区域,也许我们可能会发现我们可能会发现Spspinozan Speeds Speeds或Nietzsschesschschschschschschschschschschschschschscheanements。另一方面,它是一个异常的,因此不能将其定义为两个不同和非熟悉系统之间不可分割性的条约;但是,一旦建立了这种非天然纽带,现实中的转变就开始了,抢夺了我们以单一意图认识到两个表演者的可能性。在这里,实际情况与虚拟相结合,将其等同于虚拟现实,可以访问耳机和键盘,社交网络和大数据。
•本课程旨在针对研究生和高级本科生。•课程将快节奏。•联系(alperen.ergur@utsa.edu)如果您有疑问是否有招生。•本课程不会为您提供数据科学家的工作,但是它会使您更加更好。只是不要说出我的话 - 来倾听行业专家,了解该课程如何使您在学术和行业角色中受益。
合作通常会增加人类和其他物种的福利,但是激励代理人合作可能很困难。囚犯的困境提炼了这种社会困境的基本激励措施和回报:帕累托有效的结果是在主导的策略中,因此每个人都有强大的动力来自由骑行对另一个玩家。从理论上讲,众所周知,未来互动或重复的可能性是建立自私者之间合作的可能性:未来的遭遇可通过双关语威胁来激励合规性。然而,由于有无数的均衡,这是足够高的差异因素和不合作的平衡持续存在,因此研究如何发挥重复囚犯的困境是一种经验性练习。庞大的实验文献(请参阅下面的文献评论)解决了人类参与者合作的决定因素,形式和水平。我们研究自学算法如何发挥重复的囚犯困境。具体来说,我们将算法置于实验室实验中实施的相同经济环境中,并使用用于研究人类行为的工具分析其范围(Dal B´o and Fr´echette,2018年)。与人类一样,我们对决定因素,形式和合作水平感兴趣。在这些维度中的每个方面,我们都借鉴了实验文献,以了解社会困境中自学算法与人类之间的相似性和差异。首先,我们检查塑造人类合作的决定因素是否也影响算法合作。第二,我们询问算法采用哪种策略,并将其与人类的算法进行对比。最后,我们比较了人类与算法之间的合作水平,并询问哪些因素会导致差异。了解自学算法的行为至关重要(Rahwan等,2019)。毕竟,算法向人类提供建议或越来越多地决定他们。例如,算法可以自主驾驶汽车,调整金融投资组合,检测欺诈或设定价格等。某些自主算法在战略环境中运行,并与其他自学代理反复互动。这可能发生在协调问题中;例如,在选择流量路线或
本文研究了安全至关重要的社会环境中日益增长的算法控制的张力 - 人类认知谬误的动力与AI的概率类型的兴起,主要是以大语言模型(LLMS)的形式形式。尽管人类认知和LLM都表现出固有的不确定性和偶尔的不可靠性,但对“奇异性”的某些未来视野在矛盾地辩护地倡导放弃对主要社会过程的控制 - 包括关键性过程 - 对这些概率的AI代理人,使这些概率的AI代理人的风险加剧了不可定制或“不可定制”的风险。作为替代方案,这里提出了一个“介导的控制”框架:一种更谨慎的替代方案,其中llm-agis从战略上被视为“元数据编程者”,以设计精致的基本确定性 - 等级 - 词汇和程序,或者,总的来说是确定性的,或一般而言。是这些算法或程序,在经典计算基础架构上以及在人类监督下执行,将要部署的系统基于人类的审议决策过程,这是关键系统和过程的实际控制者。这构成了一种利用算法创新的创造力的方法,同时保持了本质的可靠性,可预测性和人类对由如此生产的算法控制的过程的责任。框架强调了LLM-AGI与其设计算法之间的劳动分裂,严格的验证和验证协议作为安全算法生成的条件以及算法的介导应用。这种方法不能保证解决先进AI的挑战,但它被认为是一种更加与人类的,风险降低的,最终更有利于将AGI整合到社会治理中的更有益的途径,这可能会导致更安全的未来,同时维护人类自由和机构的基本领域。
摘要:人口增长,再加上工业和农业发展,导致对淡水供应的需求增加。对于缺水稀缺的国家,淡化构成了解决此问题的唯一可行解决方案。反渗透(RO)技术已被广泛使用,因为膜材料已升级并降低了成本。现在,RO是最重要的技术,用于化下不同类型的水,例如海水,咸水和自来水。但是,它的设计至关重要,因为许多参数都参与获得良好的设计。大量使用RO鼓励建立一种促进设计过程的程序,并有助于获得最佳性能RO脱盐系统。本文提供了一个分为三个部分的过程:(1)对RO参数进行分类; (2)按一定顺序选择pa-armeters,然后通过12个步骤进行计算过程; (3)然后在RO系统分析(ROSA)软件上插入所选参数和获得的值。然后,通过创建一个使用ROSA的RO系统设计阶段遵循的算法图表来总结这些点。然后以拟议列表上的一个示例进行验证以验证该过程,并进行了对参数的不同值进行比较。这项比较研究的结果表明,选择不同的参数会影响RO系统的生产力。此外,每个设计都有特定的最佳参数集,这取决于用户设置的限制。
Bluesky是一种新兴的“ Twitter”和Sectralized社交媒体网络,具有新颖的功能和前所未有的数据访问。本文提供了其相互作用网络的特征,研究了500万用户的政治倾向,两极分化,网络结构和算法策展机制。数据集跨越了该网站于2023年2月至2024年5月的第一个版本。我们调查了蓝军网络的层次,喜欢,喜欢,重新发布并关注层。我们发现所有网络的特征都以重尾分布,高聚类和短连接路径(类似于其他较大的社交网络)。Bluesky介绍了Feeds - 为用户创建和由用户创建的Algorithmic内容推荐人。我们分析了所有提要,并发现尽管已经创建了大量自定义供稿,但用户对它们的吸收似乎受到限制。我们分析了布鲁斯基用户共享的超链接,并且从他们共享的新闻来源的政治倾向方面没有发现两极分化的证据。他们主要共享左中央新闻来源,几乎没有与可疑新闻来源相关的链接。与统一的政治意识形态相反,我们通过研究与以色列 - 巴勒斯坦冲突相关的观点来发现重要的基于问题的分歧。出现了两个明确的同质群集:亲帕勒斯坦的声音超过了亲以色列的使用者,并且该比例有所增加。我们结论是,蓝军在其网络结构上与现有和较大的社交媒体网站的网络结构非常相似,并为社会科学家,网络科学家和政治科学家提供了前所未有的研究机会。