在过去的几十年里,航天/航空航天飞行器的先进制导与控制 (G&C) 系统的设计受到了全世界的广泛关注,并将继续成为航空航天工业的主要关注点。毫不奇怪,由于存在各种模型不确定性和环境干扰,基于鲁棒和随机控制的方法在 G&C 系统设计中发挥了关键作用,并且已经成功构建了许多有效的算法来制导和操纵航天/航空航天飞行器的运动。除了这些面向稳定性理论的技术外,近年来,我们还看到一种日益增长的趋势,即设计基于优化理论和人工智能 (AI) 的航天/航空航天飞行器控制器,以满足对更好系统性能日益增长的需求。相关研究表明,这些新开发的策略可以从应用的角度带来许多好处,它们可以被视为驱动机载决策系统。本文系统地介绍了能够为航天/航空航天飞行器生成可靠制导和控制命令的最先进的算法。本文首先简要概述了航天/航空航天飞行器的制导和控制问题。随后,讨论了有关基于稳定性理论的 G&C 方法的大量学术著作。回顾并讨论了这些方法中固有的一些潜在问题和挑战。然后,概述了各种最近开发的基于优化理论的方法,这些方法能够产生最佳制导和控制命令,包括基于动态规划的方法、基于模型预测控制的方法和其他增强版本。还讨论了应用这些方法的关键方面,例如它们的主要优势和固有挑战。随后,特别关注最近探索 AI 技术在飞行器系统最佳控制方面的可能用途的尝试。讨论的重点说明了航天/航空航天飞行器控制问题如何从这些 AI 模型中受益。最后,总结了一些实际实施考虑因素以及一些未来的研究主题。
名称:Cormen,Thomas H.,作者。J Leisserson,Charles Eric,作者。 J Rivest,Ronald L.,作者。 J Stein,Clifford,作者。 标题:算法概论 / Thomas H. Cormen,Charles E. Leisoserson,Ronald L. Rivest,Clifford Stein。 描述:第四版。 J剑桥,马萨诸塞州:麻省理工学院出版社,[2022] J包括书目参考和索引。 distentuers:LCCN 2021037260 J ISBN 9780262046305主题:LCSH:计算机编程。 J计算机算法。 classiûcation:LCC QA76.6 .C662 2022 J DDC 005.13--DC23 LC记录可在http://lccn.loc.gov/2021037260 上获得J Leisserson,Charles Eric,作者。J Rivest,Ronald L.,作者。 J Stein,Clifford,作者。 标题:算法概论 / Thomas H. Cormen,Charles E. Leisoserson,Ronald L. Rivest,Clifford Stein。 描述:第四版。 J剑桥,马萨诸塞州:麻省理工学院出版社,[2022] J包括书目参考和索引。 distentuers:LCCN 2021037260 J ISBN 9780262046305主题:LCSH:计算机编程。 J计算机算法。 classiûcation:LCC QA76.6 .C662 2022 J DDC 005.13--DC23 LC记录可在http://lccn.loc.gov/2021037260 上获得J Rivest,Ronald L.,作者。J Stein,Clifford,作者。标题:算法概论 / Thomas H. Cormen,Charles E. Leisoserson,Ronald L. Rivest,Clifford Stein。描述:第四版。J剑桥,马萨诸塞州:麻省理工学院出版社,[2022] J包括书目参考和索引。distentuers:LCCN 2021037260 J ISBN 9780262046305主题:LCSH:计算机编程。J计算机算法。classiûcation:LCC QA76.6 .C662 2022 J DDC 005.13--DC23 LC记录可在http://lccn.loc.gov/2021037260
1。我们希望这些文件会有慷慨的引用,但是我们不需要像您在正式法律写作中看到的那样逐句引文支持。相反,在辩论或与之互动时,或者在依靠它来提出实质性事实时,请参考文献。2。同样,我们有意不要求使用特定的引用格式。对我们来说最重要的是,我们可以看到并理解您用来提出观点的文献,以及(当作品分页时)在工作中我们可以找到特定的实质性支持。3。这些是共识文件。没有提交将完美捕捉团队中任何一个人的观点,也不应该。我们期望一路上有分歧,并做出一些努力来辩论并达成共识。4。如果在关键问题上存在分歧,并且在辩论后您无法达成共识,则可以通过提出相互矛盾的观点及其相对优势/劣势来指出。
这项工作属于版权。所有权利都是由出版商唯一的,全部由材料的全部或部分授权的,特别是涉及翻译,重新使用,重新使用,插图,朗诵,广播,对微观或以任何其他物理方式或任何其他物理方式,以及传输或信息的存储和电子设置,计算机或计算机或相似的方法,或者以任何其他物理方式的复制,或者使用。使用一般描述性名称,注册名称,商标,服务标记等。在本出版物中,即使在没有特定陈述的情况下,这种名称也不受相关的保护法律和法规的限制,因此也没有暗示,因此可以免费使用。出版商,作者和编辑可以肯定地假设本书中的建议和信息在出版之日被认为是真实而准确的。就本文包含的材料或可能已犯的任何错误或遗漏而言,出版商,作者或编辑都没有提供任何明示或暗示的保修。出版商在已发表的地图和机构之后的管辖权索赔方面保持中立。
Article title: Sentiment Analysis Based on Machine Learning Algorithms: A Comprehensive Study Authors: song jiang[1], Ela Kumar[2] Affiliations: university of houston[1], k l deemed to be university[2] Orcid ids: 0009-0007-8363-7304[1] Contact e-mail: sjiang24@central.uh.edu License information: This work has been在Creative Commons Attribution许可下发布的开放访问http://creativecommons.org/licenses/4.0/,只要适当地引用了原始工作,就可以在任何媒介中不受限制地使用,分发和复制。可以在https://www.scienceopen.com/上找到条件,使用条款和发布政策。预印度语句:本文是预印本,未经同行评审,正在考虑,并提交给ScienceOpen的预印本进行开放的同行评审。doi:10.14293/pr2199.000601.V2预印本在线发布:2024年2月19日
RealPage还吸引了许多参议员和国会议员的审查。在2022年11月,ProPublica报告后不久,Sens。Amy Klobuchar(D-MN),Dick Durbin(D-IL)和Cory Booker(D-NJ)写信给司法部,担心RealPage使“ Cartel可以人为地膨胀多户住宅建筑中的租金”。 16参议员Sherrod Brown(D-OH)呼吁联邦贸易委员会审查RealPage和Rental定价算法是否违反了法律。17 2023年11月,众议员丹尼尔·高盛(D-NY)敦促纽约总检察长莱蒂蒂亚·詹姆斯(Letitia James)调查该公司。18
6 Iterative Algorithms for Linearly Constrained Optimization Problems 127 6.1 The Problem, Solution Concepts, and the Special Environment 128 6.1.1 ~ The problem 128 6.1.2 Approaches and solution concepts 128 6.1.3 The special computational environment 131 6.2 Row-Action Methods , 131 6.3 Bregman's Algorithm for Inequality Constrained Problems 133 6.4 Algorithm for Interval-Constrained Problems 142 6.5标准最小化的行算法147 6.5.1 kaczmarz的算法147 6.5.2 Hildreth的算法148 6.5.3 ART4 -NORM Minimigation
摘要使用微型氢发电厂(MHPP)已将自己确立为解决农村孤立地区能源贫困问题的基本工具,不仅在此领域,而且在大规模发电中也成为了最常用的可再生能源。尽管所使用的技术在过去几十年中取得了重要进步,但通常已应用于大型水力系统。这个事实将孤立的MHPPS的使用降级到背景。在这种情况下,这些项目的选项策略的制定仍然有很大的改善,实际上,这些项目仍然限于使用拇指规则。它导致了可用资源的次级最佳使用。这项工作建议使用遗传算法(GA)来协助MHPP的设计,从而找到MHPP不同元素的最合适位置,以实现对资源的最有效使用。为此,第一个开发了植物的详细模型,然后是最佳设计的优化问题,该问题是通过考虑真实的地形地形数据来提出的。这个问题都以single(以最大程度地降低成本)和多目标(以最大程度地降低成本,同时最大化生成的功率)模式,从而对使用气体在农村孤立区域设计MHPP的潜力进行了深入的分析。为了验证所提出的方法,它将应用于洪都拉斯的真实场景的一组地形数据。将所达到的结果与基线整数变量算法和其他元元素算法进行了比较,这表明在成本方面,解决方案的改善显着改善。
摘要 集群计算在数据分析、科学模拟和人工智能等各个领域发挥着关键作用。通过利用多台互连计算机的功能,集群能够高效地处理大规模计算任务。然而,传统的集群计算方法具有固有的局限性,可能会阻碍其性能和可扩展性。近年来,量子计算已成为一种有前途的范式,有可能彻底改变计算能力。量子计算机利用量子力学原理比传统计算机更快地执行复杂计算。专为量子计算机设计的量子算法在解决传统系统计算挑战性问题方面表现出了卓越的能力。本研究重点关注量子算法在提高集群效率方面的应用。通过利用量子计算的独特属性(例如叠加和纠缠),量子算法提供了提高集群计算系统性能和可扩展性的可能性。本研究的目的是深入探讨在集群计算环境中使用量子算法的潜在优势、挑战和未来前景。通过研究现有的为提高集群效率而设计的量子算法并分析现实世界的案例研究,我们旨在深入了解这一新兴领域的实际意义。通过这一探索,我们力求阐明将量子算法集成到集群计算中的机会和局限性,并确定进一步研究和开发的潜在途径。通过利用