名称:Cormen,Thomas H.,作者。J Leisserson,Charles Eric,作者。 J Rivest,Ronald L.,作者。 J Stein,Clifford,作者。 标题:算法概论 / Thomas H. Cormen,Charles E. Leisoserson,Ronald L. Rivest,Clifford Stein。 描述:第四版。 J剑桥,马萨诸塞州:麻省理工学院出版社,[2022] J包括书目参考和索引。 distentuers:LCCN 2021037260 J ISBN 9780262046305主题:LCSH:计算机编程。 J计算机算法。 classiûcation:LCC QA76.6 .C662 2022 J DDC 005.13--DC23 LC记录可在http://lccn.loc.gov/2021037260 上获得J Leisserson,Charles Eric,作者。J Rivest,Ronald L.,作者。 J Stein,Clifford,作者。 标题:算法概论 / Thomas H. Cormen,Charles E. Leisoserson,Ronald L. Rivest,Clifford Stein。 描述:第四版。 J剑桥,马萨诸塞州:麻省理工学院出版社,[2022] J包括书目参考和索引。 distentuers:LCCN 2021037260 J ISBN 9780262046305主题:LCSH:计算机编程。 J计算机算法。 classiûcation:LCC QA76.6 .C662 2022 J DDC 005.13--DC23 LC记录可在http://lccn.loc.gov/2021037260 上获得J Rivest,Ronald L.,作者。J Stein,Clifford,作者。标题:算法概论 / Thomas H. Cormen,Charles E. Leisoserson,Ronald L. Rivest,Clifford Stein。描述:第四版。J剑桥,马萨诸塞州:麻省理工学院出版社,[2022] J包括书目参考和索引。distentuers:LCCN 2021037260 J ISBN 9780262046305主题:LCSH:计算机编程。J计算机算法。classiûcation:LCC QA76.6 .C662 2022 J DDC 005.13--DC23 LC记录可在http://lccn.loc.gov/2021037260
攻击树是对安全性决策,支持网络攻击的识别,文档和分析的流行方法。它们是许多系统工程框架的一部分,例如umlSec [1]和sysmlsec [2],并得到了工业工具(例如Isograph's Attacktree [3])的支持。攻击树(AT)是系统图的层次图,以绘制系统的潜在攻击方案,请参见图。1和2。该图顶部的根部对攻击者的目标进行了建模,该目标通过门进一步将其重新定义为子目标:AN和GATE表示,如果所有儿童攻击成功,则攻击成功;一个或门表示任何单个儿童舒服。树的叶子是基本的攻击步骤(BAS),它模型不可分割的动作,例如切线。
Last but not least, the project will bridge the gap between hardware and software models by investigating mapping strategies targeting the following design constraints: (a) co-design and co-optimization with the underlying routing mechanism, so that smart mappings can allow more lightweight multicast hardware, (b) co-optimizing the SNN partitioning step with the placement one for efficient mapping of large scale SNNs to highly-parallel神经形态硬件。
Cryptonext安全使组织能够无缝地将其产品,系统和IT/OT基础架构从加密发现转变为加密网络安全,从而确保对量子威胁的长期弹性。它的解决方案还有助于预测并减轻密码随着时间的流逝。CryptoNext Security's offerings are segmented into three areas to support organizations in their transition to quantum-resilient cybersecurity: evaluation to measure the impact of PQC on applications and infrastructures while gaining expertise, inventory of cryptographic assets to set migration priorities and implement agile crypto management, and embedded solutions to integrate PQC into applications and systems.
机器学习(ML)见证了医疗领域内的显着意义,这主要是由于与健康相关数据的可用性增加以及ML算法的逐步增强。因此,可以利用ML来制定有助于疾病诊断,预测疾病进展,量身定制治疗以满足个人患者需求并提高医疗保健系统的运营效率的预测模型。及时检测疾病有助于有效的症状管理,并保证提供适当的治疗方法。在多发性硬化症(MS)中,诱发电位(EPS)与扩大的残疾状态量表(EDSS)有很强的相关性,这表明其潜力是残疾进展的可靠预测指标。本研究的目的是应用人工智能(AI)技术来识别与残疾指数(EDSS)评估的MS进展相关的预测因素。必须阐明EP在MS预后中的作用。我们对从125个记录组成的医学数据库获得的经验数据进行了分析。我们的主要目标是构建能够通过应用高级知识挖掘算法来预测EDSS索引的专家AI系统。我们开发了智能系统,可以预测使用ML算法,特别是决策树和神经网络的MS的进展。中,获得的精度分别为88.9%,92.9%和88.2%,可与获得88.2%,96.0%和85.0%精度的MRI相当。可以将EPS确定为MS的预测指标,其功效类似于MRI发现。对于验证EPS是必要的,该EPS明显低于MRI,并且比MRI更便宜,并且更简单,与成像或生化方法同样有效,可作为MS的生物标志物发挥作用。
替代辅助进化算法(SAEAS)来解决昂贵的优化问题。尽管SAEAS使用使用机器学习技术近似解决方案评估的替代模式,但先前的研究并未充分研究SAEAS中搜索性能和模型管理策略的Sherrotage模型准确性对搜索性能的影响。这项研究分析了替代模型准确性如何影响搜索绩效和模型管理策略。为此,我们构建了一个具有可调节精度的伪气管模型,以确保在不同的模型管理策略之间进行公平比较。我们比较了三种模型管理策略:(1)预选前(ps),(2)基于个人(IB)和(3)基于一代的基准基准问题的基于生成(GB)的基线模型,而基线模型不使用替代物。实验结果表明,较高的替代模型精度可提高搜索性能。但是,影响根据所使用的策略而变化。具体来说,随着估计精度的提高,PS证明了性能的明显趋势,而当准确性超过一定阈值时,IB和GB表现出强大的性能。模型策略
8 School of Management 1 Annamacharya Institute of Technology and Sciences, 2 Coolsoft LLC, 3 Sree Saraswathi Thyagarajan College, 4,5 Shri Nehru Maha Vidyalaya College of Arts and Science, 6 Kaamadhenu Arts and Science College, 7 Sree Narayana Guru College, 8 BBD University Abstract: This paper explores an advanced solution for enhancing quality control in Printed电路板(PCB)制造是通过集成Yolo(您只看一次)对象检测算法的制造。该系统具有传送带,直流电动机和高分辨率摄像头,用于实时识别和移动PCB上缺陷的定位。Yolo算法过程捕获了图像,有效地识别了各种缺陷,例如焊接问题和组件未对准。通过传送带和直流电动机之间的无缝集成来实现对检查过程的精确控制,从而提高了缺陷检测的速度和准确性。识别缺陷后,该系统包括一种机制,可以将有缺陷的PCB与生产线分开。有缺陷的PCB通过传送带将其改编为指定区域,以确保在制造过程中仅进行高质量的PCB。这种自动化方法可降低人类干预,可显着提高生产效率,降低制造成本并提高整体PCB质量。所提出的系统展示了尖端图像处理技术与强大的机械组件之间的协同作用,为PCB制造关键字中的缺陷检测和隔离提供了全面的解决方案:PCB,DC发动机,PCBIONS,PCBIONS,机器学习,机器学习,工业,缺陷。
分子组成数据是从气相色谱和质谱分析的现有结果中得出的,这两种技术用于分离和识别混合物中的成分。这些算法用于识别每种威士忌的原籍国及其五个最强的音符。作者然后将算法的结果与11位专家小组的结果进行了比较。
典型的图像处理任务是识别两个相邻区域之间边界(强度变化)。从经典上讲,边缘检测方法依赖于不同类型的滤膜对图像梯度的计算。因此,所有经典算法都需要至少O(2 n)的计算复杂性,因为每个像素都需要处理(Yao,Wang,Liao,Chen和Suter,2017)。已经提出了一种量子算法,该算法应该与现有边缘提取算法相比提供指数加速(Zhang,lu和gao。2015)。但是,该算法包括一个复制操作和一个量子黑框,用于同时计算所有像素的梯度。对于这两个步骤,目前都没有有效的实现。提出了一种高效的量子算法,称为量子Hadamard Edge检测,以找到边界(Yao,Wang,
I.引言尼日利亚的医疗保健系统在降低产妇和胎儿死亡率方面面临重大挑战。尽管进行了许多干预措施,但由于诸如医疗基础设施不足,获得优质护理的机会以及熟练的医疗保健人员不足之类的因素,这些速度仍然令人震惊。产妇和胎儿死亡率是医疗系统有效性和可及性的关键指标。尽管努力提高尼日利亚的孕产妇和儿童健康,但第三级医院的死亡率仍然很高(Ikeoha等,2022)。为了应对这些挑战,利用机器学习(ML)和人工智能(AI)等技术非常重要(Khuluq,2023)。根据Okpala和Okpala(2024),AI与医疗保健的整合“需要软件的应用和机器学习的算法,使用输入数据得出近似结论,通过模仿人类对人类的评估和诊断的良好程度,以诊断人类的能力,以诊断有效性,以促进人类的能力,以至于有效地诊断了有效性的范围。疾病。”