1。关键术语和定义。2。选定的元素(名称为符号)。3。选定的化合物(姓名公式)。4。选定的化合物(名称为公式)。5。识别离子(姓名公式)。6。选定的元素(名称为符号)。7。编写元素名称。8。编写元素符号。9。从定义中标识关键术语。7。修订课
近年来,文本图像联合预训练技术在各种任务中显示出令人鼓舞的结果。然而,在光学特征识别(OCR)任务中,将文本实例与图像中的相应文本区域对齐是一个挑战,因为它需要在文本和OCR文本之间有效地对齐(将图像中的文本称为ocr-文本以与自然语言中的文本区分开来),而不是对整体图像内容的全面理解。在本文中,我们提出了一种新的预训练方法,称为o cr-text d估计化m odeling(ODM),该方法根据文本提示将图像中的文本样式传输到统一样式中。使用ODM,我们在文本和OCR文本之间实现了更好的对齐方式,并启用预训练的模型以适应场景文本的复杂和多样化的样式。此外,我们为ODM设计了一种新的标签生成方法,并将其与我们提出的文本控制器模块相结合,以应对OCR任务中注释成本的挑战,并以大量未标记的数据参与预培训。在多个Pub-LIC数据集上进行的广泛实验表明,我们的方法显着地证明了性能,并且在场景文本检测和发现任务中的当前预训练方法优于当前的预训练方法。代码在ODM上可用。
开放式对象检测(OSOD)已成为当代研究方向,以解决对未知对象的检测。最近,很少有作品通过使用Con-Contrastive聚类来分开未知类,在OSOD任务中实现了可观的性能。相比之下,我们提出了一种新的基于语义聚类的方法,以促进语义空间中有意义的群集的对齐,并引入一个类去相关模块以实现群间间的分离。我们的方法进一步不适合对象焦点模块预测对象分数,从而增强了未知对象的检测。此外,我们采用了i)一种评估技术,该技术对低置信度输出进行了惩罚,以减轻对未知对象的错误分类的风险,ii)一种称为HMP的新指标,该指标使用hMP使用Har-nonic Mean结合了已知和未知的精度。我们的广泛实验表明,所提出的模型可以在OSOD任务上对MS-Coco&Pascal VOC数据集有显着改进。
汽车行业是此类竞争前协作努力的一个显著例子,过去几十年来,竞争前研究极大地推动了创新。随着技术进步和新产品的推出,法规和标准的制定也取得了重大进展,有助于推进欧盟道路运输系统的发展;所有这些共同实现了道路安全改善、运输解决方案的可持续性和出行服务的改善。目前,通过联合欧洲学术、研究和工业界最优秀的力量来加强竞争前研究,同时保持对道路运输系统的共同愿景,这一点至关重要 3 ,因为欧洲汽车行业面临着来自其他几个地区参与者的巨大压力。
A10:ALTCS-EPD 会员仍将获得年度开放注册选择。但是,如果会员拥有 Medicare Advantage 双重特殊需求计划 (D-SNP),并且有来自同一母公司的 ALTCS-EPD 计划,则会员将注册该 ALTCS-EPD 计划。如果会员拥有 Medicare Advantage 双重特殊需求计划,并且所有 ALTCS-EPD 计划均来自同一母公司,则该会员可以从可用的 ALTCS-EPD 计划中进行选择。如果 ALTCS-EPD 会员没有 Medicare Advantage D-SNP,则他们可以选择可用的 ALTCS-EPD 计划。
主权气候VAR建立在网络绿色金融系统(NGFS)及其在各种气候变化情况下的利率和通货膨胀方案的框架上建立的(请注意,在利率预测中仅考虑过渡风险)。基于NGFS方案,MSCI引发了对主权债券收益曲线的潜在冲击和盈余通货膨胀曲线,以解释市场从气候 - 现实气候基线期望转向任何其他气候情况时的期望变化。然后使用这些屈服曲线变化来强调局部货币主权键的价值。
投资组合相对于基准投资组合的碳足迹[2]。它涉及将投资从较高的碳排放资产转移到较低的碳排放资产。气候解决方案是主题投资和战略,直接有助于减轻气候变化并适应其影响。这些解决方案着重于促进绿色经济的融资技术,项目和实践,例如在太阳能,风能和水力发电上的投资,碳捕获解决方案,可持续基础设施或绿色房地产。为包括气候解决方案,提出了两种构成:对高度暴露于气候变化的部门的最低限度,与欧盟分类法的最小份额(或CAPEX)相符。不幸的是,在CTB和PAB基准的最终版本中,对绿色足迹的参考(例如,绿色收入或资本支出)消失[16]。此外,气候影响部门的最终版本包括大量行业,这使得与包含气候解决方案的标准无关[12]。
视觉 - 语言变压器(VLT)最近显示出巨大的成功,但同时伴随着大量的计算成本,其中主要原因可以归因于大量的视觉和语言令牌。存在用于压缩VLTS的令牌修剪研究主要遵循基于单模式的方案,但忽略了对齐不同模态来指导令牌修剪过程的关键作用,从而导致重要的代币在另一个模态分支中错误地修剪一个模态。同时,现有的VLT修剪作品也缺乏基于不同输入样本动态压缩每一层的灵活性。为此,我们提出了一个名为M Ultodal的新颖框架,用于加速变化VLT的木质制成d ynamic t ynamic t oken p Runing(MADTP)。具体来说,我们首先引入了精心设计的多模式对齐指导(MAG)模块,该模块可以使相同语义概念的特征与不同的模式相结合,以确保修剪的代币对所有模式都不太重要。我们进一步设计了一种新型的dy-namic令牌修剪(DTP)模块,该模块可以根据不同的输入实例自适应地调节每个层中的令牌压缩比。对各种基准测试的广泛实验表明,MADTP可以显着确定多种模型的计算复杂性,同时保留竞争性能。值得注意的是,当将MADTP应用于NLVR2数据集中的BLIP模型时,可以将GFLOPS降低80%,而性能降低少于4%。该代码可在https://github.com/double125/madtp上找到。
我们报告了能够对齐多个核苷酸序列的卷积变压器神经网络。神经网络基于图像分割中常用的U-NET,我们采用了该神经网络将其用于将未对准序列转换为对齐序列的U-NET。对于对齐场景,我们的ALI-U-NET神经网络已经接受过培训,在大多数情况下,它比MAFFT,T-Coffee,Muscle和Clustal Omega等程序更准确,同时比单个CPU核心上的类似准确的程序快得多。的限制是,神经网络仍针对某些对齐问题进行了专门训练,并且对于以前从未见过的差距分布而表现不佳。此外,该算法当前与48×48或96×96核苷酸的固定尺寸比对窗口一起工作。在此阶段,我们将研究视为概念证明,确信目前的发现可以扩展到更大的一致性,并在不久的将来将其扩展到更复杂的一致性方案。