摘要: - 近年来尿路感染(UTI)已成为一个日益增长的问题。引起尿路感染(UTI)的大多数革兰氏阴性(GN)细菌是大肠杆菌。引起UTI的其他克阳性(GP)细菌包括Klebsiella肺炎,铜绿假单胞菌,Acinetobacter Baumannii,肠杆菌,肠肠杆菌,Proteus mirabilis,citdrobacter,Citdrobacter,Citdrobacter Freunde,Proteus fulunde,proteus ulvaris ulvaris and klebaris and klebaris colgaris colvaris colvaris colvaris cytytipicin。使用了代表革兰氏正和革兰氏阴性的四种微生物。两克阳性细菌是金黄色葡萄球菌和枯草芽孢杆菌,而两克阴性细菌是大肠杆菌和鼠伤寒沙门氏菌。通过琼脂 - 孔扩散法监测植物提取物的抗菌活性。最近,药用植物在治疗包括尿路感染在内的不同种类的感染中发现了很大的普及。初步的植物化学分析表明,生物碱叶叶提取物中的活性生物成分是生物碱,单宁,皂苷,类黄酮作为活性生物成分的存在。
无花果果实是生物活性化合物的重要来源,例如类黄酮,苯甲醛,生物碱,萜类化合物和苯酚,它们是抗菌无花果果实作为类黄酮的来源,具有抗生素活性,与内部生物学植物的作用不可分割,使得内属菌丝的作用不可分割。研究包括内生细菌在内的微生物的多样性并不容易,因为环境中有99%的微生物是不可培养的物种,因此需要进行分析,能够研究而没有称为宏观概念的内生细菌的多样性。这项研究的目的是确定在这些内生细菌中有用的无花果水果和预测基因中内生细菌的多样性。研究方法指的是无花果组织DNA提取,16S rRNA基因扩增,电泳,下一代测序和使用操作分类学单元进行分析的研究方法。The results of species-level endophytic bacterial diversity obtained on Fig fruit (Ficus carica L.) varieties Gren Yordan are Weissella ghanensis, Weissella paramesenteroides, Ralstonia pickettii, Leuconostoc citreum, Pantoea stewartii, Gluconobacter cerinus, Lactococcus lactis.
抗生素耐药性 (AMR) 的威胁日益严重,这凸显了持续供应新型抗菌剂的必要性。作为共生体寄生在植物组织内的内生菌微生物一直是潜在抗菌物质的来源。然而,许多新型和有效的抗菌剂尚未从这些内生菌中发现。本研究探讨了内生真菌作为具有抗菌能力的新型生物活性化学物质来源的潜力。这些真菌通过聚酮合酶 (PKS) 和非核糖体肽合成酶 (NRPS) 途径合成聚酮和肽等次级代谢产物。诸如异戊烯基吲哚生物碱和富马酸等著名物质已显示出对抗多重耐药性感染性病原体的良好抗菌和抗真菌特性。本综述还强调了内生菌与其宿主植物之间的共生关系,这对于次级代谢产物的产生至关重要。该研究重点关注内生菌分离方法的重要性,并提出将其用于可持续农业、生物修复和医学。未来的研究将内生菌生物多样性分析与新一代测序 (NGS) 和纳米技术相结合,可以提供对抗抗菌药物耐药性的新技术,并为多个行业的可持续发展做出贡献。
海洋具有大量的微生物多样性,在海水,海洋沉积物和海洋生物中广泛普遍存在。与传统自然产品研究中探索的地面资源相反,海洋微生物的栖息地明显独特。放线菌是继发代谢产物的重要来源,包括抗生素和其他有效的天然产物,例如链霉素和四环素。他们在诸如致病细菌感染等明显疾病的临床治疗中起着关键作用。然而,广泛使用抗生素导致抗药性细菌的种类和数量急剧增加,尤其是耐多药(MDR)和广泛的耐药(XDR)细菌,在临床环境中,对人类生存构成严重威胁。因此,即时需要发现结构新颖的抗菌天然产品并开发新的抗生素。这项迷你评论总结了来自2024年出版的海洋放线菌的45种新型抗菌天然产品。这些产品,包括聚酮化合物,生物碱,大酰胺类和肽,在其结构和生物活性方面突出显示。本文的目的是为新型抗生素的研究和开发提供宝贵的见解。
摘要:本文的目的是评估并介绍从Cajanus Cajan(C。Cajan)和Vigna Subterranean(V.Subterranea)贝壳中获得的水和甲醇提取物的缩放抑制,并使用适当的标准技术从NSUKKA,NSUKKA,NIGERIA收集。定量植物化学分析(以mg/100g表示)揭示了C. cajan的二次代谢产物:类黄酮(2226.50±47.35),酚类(6294.65±117.35),皂苷(2.53±0.15),Alkalins(2.53±0.15),Alkaliacy(587)。 (0.77±0.02),萜类(989.87±26.72)和单宁(176.49±13.18)。同样,V。Subterranean展示了;类黄酮(2226.50±47.35),酚类(6400.11±65.22),皂苷(1.79±0.4),生物碱(114.22±17.64),类固醇(0.46±0.06),0.46±0.06),0.46±0.06,Terpenoids(Terpenoids) (58.18±1.12)。GC-MS分析C. cajan和V. supterranean提取物均显示了不同化合物的14个峰,其中包括; phenol, methylphenol, dimethylphenol, 2-furaldehyde, 2- hydroxymethifuran, levoglucosan, 4-mehtylguaiacol, vinylphenol, 4-vinylguaiacol, eugenol, vanillin, isoeugenol, 4- allyl-2-6dimethoxphenol and dimethylbenzene.此外,FT-IR光谱还鉴定出在3438和3430处的O-H(酚类),CH 2在2923和2884时拉伸脂肪族,以及C = C在两种提取物中都在1635和1643中不饱和。GC-MS,FT-IR和植物化学研究的结果共同表明,这些提取物含有环保成分,尤其是更高浓度的酚类和泡沫剂。这支持C. Cajan和V. Subterranean作为候选人的潜力,以部署为环保量表抑制剂。doi:https://dx.doi.org/10.4314/jasem.v28i10.13许可证:cc-by-4.0开放访问政策:Jasem发表的所有文章均为开放式访问文章,并且可以免费下载,复制,重新分配,reperstribute,repost,repost,reotost,translate和read。版权策略:©2024。作者保留了版权和授予Jasem首次出版的权利。只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将本文列为:Orjiocha,S。I; Ibezim-Ezeani,M。U; Obi,C。(2024)。评估Cajanus cajan和Vigna地下壳提取物中抑制化合物的缩放缩放抑制化合物用于工业利用。J. Appl。SCI。 环境。 管理。 28(10)3047-3056日期:收到:2024年7月30日;修订:2024年8月29日;接受:2024年9月21日发表:2024年10月5日关键字:比例;抑制剂;酚类;发泡剂;提取物产业面临着巨大的挑战,该管道堵塞是由管墙上的规模持续积累引起的。 这种生长是由于流体流体中溶解的钙和镁盐的存在而引起的。 这些阻塞导致管道中的各种问题,包括管道腐蚀攻击,流体减少SCI。环境。管理。28(10)3047-3056日期:收到:2024年7月30日;修订:2024年8月29日;接受:2024年9月21日发表:2024年10月5日关键字:比例;抑制剂;酚类;发泡剂;提取物产业面临着巨大的挑战,该管道堵塞是由管墙上的规模持续积累引起的。这种生长是由于流体流体中溶解的钙和镁盐的存在而引起的。这些阻塞导致管道中的各种问题,包括管道腐蚀攻击,流体减少
Dysoxylum 属具有多种次生代谢产物。对该属各种物种的研究一直在增长,并产生了具有有趣结构和活性的化合物,到目前为止,已报道了许多萜类化合物、色满生物碱、柠檬苦素类、倍半萜、黄酮类、类固醇、原柠檬苦素类和硫的化合物。这非常有趣。具有多种次生代谢产物的 Dysoxylum 属物种之一是 D. alliaceum 。本研究的目的是获得 D. alliaceum 树皮的次生代谢产物。将 D. alliaceum 树皮依次用正己烷、乙酸乙酯和甲醇浸渍。采用各种色谱技术分离和纯化乙酸乙酯提取物,并使用紫外、红外、核磁共振和质谱等光谱方法进行表征,并通过薄层色谱分析指导获得化合物 6,7-二甲氧基二氢香豆素和拟议的生物合成。根据光谱数据的解释并与先前研究的光谱数据进行比较,确定了这些化合物的化学结构。对 P-388 MTT 白血病细胞的细胞毒活性测试获得 IC 50 为 39.210 g/mL,并被宣布为无活性。
白血病 (ALL) 5 。长春花碱用于治疗乳腺癌、睾丸癌和神经母细胞瘤 6 。长春地辛是一种从长春花碱中提取的生物碱,已显示出对抗霍奇金淋巴瘤和非霍奇金淋巴瘤、肺癌和乳腺癌的活性 7 。长春瑞滨用于治疗已发展到周围组织或身体其他部位的非小细胞肺癌 (NSCLC) 8 。根据最近的一项研究,长春胺是少数对活细胞有积极作用的生物碱之一。通过增加血流量和区域葡萄糖的吸收,它可以作为脑代谢增强剂,对缺血和缺氧具有神经保护作用,并具有抗氧化和抗凋亡特性。长春胺被认为是治疗镰状细胞病的潜在成分,因为它似乎可以作为活细胞中的氧载体 9 。长春胺是一种单萜吲哚生物碱(图1),主要存在于长春花叶中10。在本研究中,根据国际协调会ICH Q2(R1)指南11的建议,建立了高效薄层色谱法(HPTLC)对长春花叶甲醇提取物中的长春胺进行定量分析。
摘要牙周炎是一种多因素疾病,是由于革兰氏阴性细菌引起的细菌在牙齿表面上的殖民化形成的斑块而发生的,其中一种是聚集的聚集放线症ceTINMYSIMYCETEMECETEMECITANS(A. actinomycotemcomentans)。可以使用有益的草药材料进行牙周炎治疗。这样的草药材料是胡椒叶叶(Peperomia pellucida(L。)kunth),传统上用于治疗各种疾病,包括牙齿和口腔疾病。这项研究旨在确定胡椒叶提取物对放线杆菌细菌的生长的有效性。这是一项实验实验室研究,使用六个治疗组的测试后对照组设计,使用磁盘扩散方法。使用单向方差分析(P <0.05)进行数据分析。该研究表明,所有浓度的胡椒叶叶提取物有效地不受曲霉的细菌的生长,因为辣椒叶叶含有大量的生物碱,黄酮和单宁,这些生物碱和单宁蛋白已知具有抗体和抗炎症作用。该研究得出结论,胡椒老年叶提取物在抑制活化杆菌的生长方面具有有效性。
上清液测量并表示为非单宁酚类干物质的含量。从上述结果中,样品的单宁含量计算如下如下(%)=总酚类(%) - 非单宁酚类(%)确定总类黄酮含量为0.5 ml的等分试样(10mg-12ml)稀释的样品溶液的等分试样(10mg-12ml)稀释的样品溶液与蒸馏水的溶液混合了2ml,并随后将水与0.15 ml溶解了5%。6分钟后,加入0.15 ml的10%ALCL 3溶剂素,并允许6分钟,然后将2ml的4%NaOH溶液添加到混合物中,并彻底混合并允许静置15分钟。在510nm的水毛坯下确定混合物的吸光度。结果表示为提取物[8]的mg re(rutin当量)g -1。结果和讨论,确定并在表中确定了乙醇乙醇提取物的总生物碱,总酚类,总霉菌和单宁含量。总生物碱含量记录为13.6 mg 100g -1。总酚类和单宁含量表示为单宁酸等效,总黄酮为鲁丁素等效。选定的植物样品显示了总酚类的72.1 mg tae g -1,单宁53.5 mg tae g -1和总黄酮的24.9 mg re g -1。药用植物的药物显示出简单,有效,没有副作用的额外优势,并提供了广泛的活性,重点是慢性和退化性疾病的预防作用(Chin等,2006)。药用植物具有称为植物化学化学的化学取代,可对人体产生各种生理作用。药用植物是传统药物,现代药物,营养食品,食品补充剂,FLOK药物,药物中间体和化学实体的最丰富的生物资源(Ncube等,2008; Nirmala eta eta eta al。,2011 A,b)。植物化学筛查是发现新药的重要一步,因为它为临床意义的植物提取物提供了有关特定原发性和二级代谢的信息。植物化学物质用于预防和治疗糖尿病,癌症,心脏病和高血压(Waltnerlaw等,2002)。几种药用植物的治疗作用归因于存在酚类化合物,例如类黄酮,酚酸,原腺苷,二萜和单宁(Pourmorad等,2006)。在本研究中,拟杆菌的乙醇提取物的定性植物化学分析揭示了生物碱,糖苷,类黄酮,皂苷,苯酚和单宁。乙醇提取物中上述化合物的阳性反应可能是由于有机溶剂中植物血管菌的溶解能力所致。早些时候,在Strumpfia Maritima(Hsu等,1981),Uncaria物种(Heitzman等,2005),Mitracarpusscaber(Abere等,2007)和Teucrium stocksianum(Rahim等人,2012年)进行了类似的研究。天然产品在各种疾病的药物开发中发挥了重要作用。直到1990年的科学家们认为,普拉特生产的大多数化合物都是无用的废物。这些废物化合物称为二级代谢产物。,但后来发现这些化合物可能会执行大量功能。这些化合物中的许多不能在商业基础上经济合成。次级代谢产物具有复杂的立体结构,并具有许多手性中心,这对于各种生物活性至关重要[9]。来自天然来源的二级代谢产物是药物开发的好产品,因为在生活系统中详细阐述,它们可以看出与药物更相似,并且比合成药物表现出更多的生物友好性[10]。植物会产生各种生物活性分子,使其成为多种类型的药物的丰富来源。植物带有天然产品表现出药理学和生物学活动,并在威胁生命的条件下起重要作用[11]。类黄酮,据报道会发挥多种生物学作用,包括抗炎,抗剥离,抗过敏性,抗病毒和抗癌性活性[12,13]。单宁已经报道了石榴,tambolan和番石榴的叶子,并且在抗diarhoeal和抗甲状腺漏剂制剂中使用了药物rannins [14,15]。皂苷是类固醇的糖苷,是植物中发现的类固醇生物碱,尤其是在植物皮中,它们形成蜡状保护涂层。它们可用于降低胆固醇,作为抗氧化剂和抗炎药。
石房蛤毒素(STX)是最重要的海洋毒素之一,它包含一大类天然的神经毒性生物碱,通常称为麻痹性贝类毒素(PST)。1,2STX由Dino agellattette属、Gonyaulax catenella、Protogonyaulax tamarensis、Alexandrium catenella和Alexandrium minutum产生,在生活水中特别是在有害藻华(HAB)事件期间浓度相当高。3 – 5过量的STX会造成水体污染,并对其他动物、植物和微生物产生致命影响。尽管它对某些动物,例如鱼或贝类等的生长没有影响,但它会被它们包裹并在其体内积累。 STX 中毒可能导致严重甚至致命的疾病,目前尚无人工呼吸和液体疗法可解毒 STX。6 目前,澳大利亚、巴西和新西兰均已将饮用水中的石房蛤毒素浓度(毒性当量)指导值为 3 ng mL 1。7 为实时监测水环境污染、海水养殖污染和海产品安全,需要快速灵敏地检测 STX。