Alessandri S.,Cabreer A.M.R.,Martin M.A.,Mattitioni C.,Pereira-Lorenzo S.,DondinL。 意大利和西班牙野生和驯化的栗子树的遗传炭化。 Scientia Horticulturae,295(2022年3月),1-8 [10.1016/j.scenta.2022.110882]Alessandri S.,Cabreer A.M.R.,Martin M.A.,Mattitioni C.,Pereira-Lorenzo S.,DondinL。意大利和西班牙野生和驯化的栗子树的遗传炭化。Scientia Horticulturae,295(2022年3月),1-8 [10.1016/j.scenta.2022.110882]
冈萨雷斯,安德鲁; Vihervaara,Petter;平衡,帕特里夏;贝茨,阿曼达E;伊丽莎·贝拉克塔罗夫(Bayractarov);贝灵汉,彼得·J;著名的安德里亚斯;坎贝尔,吉利安; Catchen,Michael D;珍妮(Jeanne)巴尔斯(Barres)孩子,乔纳森; Coops,尼古拉斯;马克·J·科斯特洛(Costello); Czçz,Ballin;声明,aurélie;玛丽亚的多纳拉斯;格雷戈尔的杜波依斯;达菲(Duffy),艾米特(Emmett J);希尔德(Eggermont);费尔南德,米格尔;内斯特·费尔南德斯(Fernandez); Ferrier,西蒙;加里(Gary),加里(Gary N);吉尔,迈克尔;砾石,多米尼克;战争,卡洛斯A; Gualnick,罗伯特;迈克尔·哈福特(Harfoot);赫希,蒂姆;霍班,肖恩;休斯,爱丽丝C;雨果,威姆;亨特,玛格丽特E;伊斯贝尔,森林; Jetz,Walter;青年,诺伯特;亲吻,丹尼尔;克鲁格,Cornelia B;彼得·库尔伯格(Kulberg);伟大的,伊万; Leung,Brian; Lando-Murdical,Mary Cecilia;主,让·米歇尔(Jean-Michel);米歇尔·洛雷(Loreau);路易斯,艾米;好吧,keping;麦克唐纳,安娜J;但是,约阿希姆; McGeoch,旋律; Mihoub,Jean Baptiste; Millette,Katie L;莫尔纳,灵魂;山,丰富;莫里亚(Akira); Muller-Karger,Frank E; Muraota,Hiroyuki; Nacaica,Masahiro;纳瓦尔(Laetitia)纳瓦拉(Navarre); Newbold,蒂姆; Nyimir,艾丁;奥布拉,大卫; O'RE Connor,玛丽; Paganin,马克;颗粒,多米尼克;佩里亚(Pereara),亨里克(Henrique);毒,提摩太; Pollock,Laur J; Purvis,Andy;阿德里亚娜(Adriana)Radulovici;罗奇尼(Rochini),荷兰人; Rooesli,Claudia;沙普曼,迈克尔; Gabriela的Stroub-Stroub; Schmeller,Dirk S; Schmiedel,Ute;施耐德(Fabian D); Shakya,Mangal Man;斯基德莫尔(Skidmore),安德鲁(Andrew); Skowno,Andrew L;拿,yeoi; Tuanmu,毛宁; Turach,Eren;特纳,伍迪; Urban,Mark C; Nicolos Urbin-Cardon; Valbuena,鲁本;普特的面包,安东尼;范·哈弗(Van Havre),罗勒; Wingate,弗拉基米尔·鲁斯兰(Vladimir Ruslan);赖特,
Type Name Description Property acceleromenter_sample Last 3-axial accelerometer measurement Property accelerometer_vector Last 3-axial accelerometer vector of samples Property accelerometer_threshold Accelerometer threshold for event detection Action start/stop Activate/deactivate the sensor monitoring Event onOverThresholdEvent Trigger the event when the accelerometer sample is greater than the threshold value Table 1.与每个SHM传感器相关的TD子集(机器可信学格式)
Simonetti,E.,Bosi,S.,Negri,L.,Baffoni,L.,Masoni,A.,Marotti,I。等。(2022)。分子系统发育分析淀粉酶胰蛋白酶抑制剂(ATI)从一系列古代和现代小麦中选择。谷物科学杂志,105,1-9 [10.1016/j.jcs.2022.103441]。
智能系统通常可以理解为由人类和人工制剂,计算和物理人工制品以及调节均质组件之间相互作用的机构和规范组成的社会技术系统。智能社会技术系统的设计要求非平凡的社会和组织概念和技术,通常是从代理和多代理系统(MAS HESEFORTH)领域进行的[54]。特别,协议技术[55]可以在旨在促进智能系统中促进合作和协作活动(例如对话,谈判,论证)中促进合作和协作活动之间的智能互动。鉴于他们与MAS的长期联系[12,49],基于逻辑的技术在这种情况下可以发挥作用,尤其是在处理互动时(包括人与人之间的人对代理和代理商对代理人)[52]。更具体地说,基于逻辑的协议技术可以作为推理和代理对话的一般框架,在这种情况下,论证扮演着核心角色
ALMA学院社区参与(ACE)奖学金全额学费单独的申请要求ALMA College Community Consagement(ACE)奖学金计划是为了提供Gratiot,Isabella和Montcalm县最敬业的学生提供机会,以寻求改变生活的自由主义艺术教育。 该计划每年将提供多达10个四年制的全年奖学金,以毕业的高中生或转学学生表现出经济需求。 学生可以利用自己的州和 /或联邦援助来实现住房和餐饮计划。 该奖项仅涵盖了2个春季任期的学费。 认为批判性风险资金的上限为$ 1,000。ALMA学院社区参与(ACE)奖学金全额学费单独的申请要求ALMA College Community Consagement(ACE)奖学金计划是为了提供Gratiot,Isabella和Montcalm县最敬业的学生提供机会,以寻求改变生活的自由主义艺术教育。该计划每年将提供多达10个四年制的全年奖学金,以毕业的高中生或转学学生表现出经济需求。学生可以利用自己的州和 /或联邦援助来实现住房和餐饮计划。该奖项仅涵盖了2个春季任期的学费。认为批判性风险资金的上限为$ 1,000。
摘要 - 我们为三元神经网络提供3.1 POP/S/W完全数字硬件加速器。可爱的是完全展开的三元推理引擎,重点是最大程度地减少非计算能量和开关活动,以便将用于存储(本地或全球)中间结果的动态功率最小化。这是通过1)在功能图和过滤器中完全独立的数据路径体系结构来实现权重,导致切换活动进一步减少。与最新的加速器相比,可爱的精度更高或相等,同时将整个核心推理能源成本降低4.8×–21×。
摘要:在60-70°C的铜催化铜催化的“通过电子传输再生”型苯乙烯(Arge Atrp)的铜催化的“激活剂”中获得异常的聚苯乙烯凝胶,并使用Ascorbic Acid Acid Acid Acid-Na 2 CO 3作为降低的系统和EtoAc/etoAc/Etoh as solvent组合。由于没有将分支或交联试剂添加到反应混合物中,因此排除了它们的原位形成,因此结果是显着的。在现象的起源上,异常的PS分支需要一个通用的双功能引发剂,并且在机械上与双功能大型引导者之间的终止反应结合。实际上,在导致Cu II构建或增加链聚合速率的反应条件下,分支/交联现象失去强度甚至消失。温度也是一个关键变量,因为对于高于90°C的温度未观察到分支。我们认为,凝胶化的途径始于双功能引发剂的苯乙烯的受控链聚合,很快由于终端单元的根部耦合而导致的阶梯增长聚合。反应混合物中链数和自由基的逐渐减少应使剩余长链的C -Cl末端之间的分子内耦合越来越可能,从而产生了多卡宁网络。
摘要 - 交流损耗是脉冲,超级导管iTer线圈的主要热负荷,因此是冷冻系统和超导体的设计驱动器。在过去几年中,从次要的链,电缆,长长的“线圈样”导体(所谓的插入型线圈)到完成的线圈的重要性,从iTer线圈的组件进行广泛的AC丢失表征,在过去的几年中进行了。 最近对第一个中央电磁阀(CS)模块进行了工厂测试,其中包括代表操作范围的交流损耗测试。 AC损失的建模对于准备ITER TOKAMAK操作和调试至关重要。 以下删除ITER CS线圈的交流损耗模型。 此类模型必须易于实现,并快速执行,以允许模拟较长的ITER等离子体方案。 本文解释了所应用的简化,并讨论了含义。 对模型对实验数据进行了验证。从次要的链,电缆,长长的“线圈样”导体(所谓的插入型线圈)到完成的线圈的重要性,从iTer线圈的组件进行广泛的AC丢失表征,在过去的几年中进行了。最近对第一个中央电磁阀(CS)模块进行了工厂测试,其中包括代表操作范围的交流损耗测试。AC损失的建模对于准备ITER TOKAMAK操作和调试至关重要。以下删除ITER CS线圈的交流损耗模型。此类模型必须易于实现,并快速执行,以允许模拟较长的ITER等离子体方案。本文解释了所应用的简化,并讨论了含义。对模型对实验数据进行了验证。对模型对实验数据进行了验证。
(HV≥),产生的激子可以在材料表面的电子和孔的形成中进化。这可能导致氧化还原反应,从而促进活性氧(ROS)的原位形成,例如羟基自由基,超氧化物阴离子或单氧氧[2,4 - 6]。短寿命的反应性物种不仅可以降解有机污染物,还可以降解病毒和细菌[7-9]。在1970年代,福岛和同事[10]和弗兰克和巴德[11]的开创性作品证明了异质媒体中二氧化钛(TIO 2)所表现出的光催化性证券。该材料由于其特殊属性而被视为参考,例如光化学稳定性,低成本,紫外线范围内的带隙能及其出色的光效率[2,4,5]。最近,已经采取了许多努力来增强TIO 2光效率并解决了一些固有的局限性(例如,快速电荷重组和低可见光活动性激活)[12]。由于光催化性能很大程度上取决于表面特性,因此最被剥削的策略之一是TIO 2胶体纳米系统合成[13]。这有助于表面/体积比显着增加。然而,纳米颗粒(NP)倾向于自发地凝结,从而降低了有效的表面积并降低光催化活性。此外,迄今为止,从反应培养基中的NP恢复也是一项具有挑战性的任务[13]。为了克服这些缺点,已经进行了许多研究,以支持不同材料上的光催化纳米颗粒。聚合物材料,玻璃和无机织物是最常用的支持[14]。电纺聚合物纳米纤维已成为有前途的Alter天然,可作为一种多功能,稳定且潜在的活跃平台,用于在异质催化中应用。纳米纤维(NFS)显示出独特的功能特性,例如亚微米直径,较大的特定表面积和高纵横比。这些材料可以作为宏观多孔非织造结构获得,其特征是柔韧性和弹性。重要的是,这种类型的聚合物基质具有可添加的毛孔和化学功能,可以在稳定和增强半导体和金属纳米颗粒的光效率方面发挥关键作用。杂种材料,并在从水中轻驱动有机污染物的轻度驱动去除中可能采用了潜在的应用。迄今为止进行的大多数研究都被认为是被剥削的合成聚合物,并且在少数情况下,天然聚合物,生物聚合物或可生物降解的聚合物才被考虑[15]。PAN和PVDF电纺纤维近年来主要是由于其出色的热,机械稳定性和较高的化学耐药性[16-23]。也报道了其他聚合物(例如PMMA,PCL和CAB)的使用[24,25]。壳聚糖(CS)是最有希望的天然聚合物之一。Karagoz等。 进行了对PCL/TIO 2 NFS进行光催化的研究。Karagoz等。进行了对PCL/TIO 2 NFS进行光催化的研究。壳聚糖是源自几丁质的天然聚糖,具有许多极性和电离基团,因此对水具有高亲和力[26,27]。然而,CS通过电纺丝固有的处理性固有较差,因此有必要将其与合成聚合物融合以获得电纺纳米纤维组件[28,29]。在这方面,具有出色属性的理想候选者,例如生物相容性,生物降解性,非毒性和良好的机械性能,是poly(caprolactone)(caprolactone)(PCL)。特别是,该脂肪族聚酯可用于形成表现出高可溶性和兼容性的聚合物混合物,并提高其加工性[26,30]。有关于在不同应用中使用含有TIO 2纳米颗粒的PCL纳米纤维的报告。他们的研究重点是测试紫外线照射下甲基蓝和布洛芬的降解,达到约60%的降解率。此外,作者报告说,将AG引入NFS增强了降解和赋予抗菌特性[31]。Peng等。 产生的多孔纤维由PCL /TIO 2 /retoteRite组成,显示出有机染料的出色降解特性。 分散良好Peng等。产生的多孔纤维由PCL /TIO 2 /retoteRite组成,显示出有机染料的出色降解特性。分散良好