● AI 需要耗费大量的运算资源,例如: Google 可以使用AI 成功辨识照片上的猫,在成功之前让AI 观看了20000000 张有猫的照片,没有高效能硬体的帮助,这样的训练过程必须耗费10 年以上。 ● 由于CPU 制程的进步,再加上用来产生3D 图形的GPU ,使得AI 获得了空前的成功。例如: AlphaGo 从国小的棋力进步到打败世界冠军,只花了短短2 年的时间,当时使用了176 颗GPU ,是一台超级电脑。 ● 2017 年Google 发明了专门为AI 优化的TPU 来取代GPU ,目前只要一台搭载4 TPU 的个人电脑,搭载AlphaZero AI ,训练3 天就可以打败AlphaGo 。
强化学习 (RL) 算法通常利用学习和/或规划技术来得出有效的策略。事实证明,将这两种方法结合起来在解决复杂的顺序决策挑战方面非常成功,AlphaZero 和 MuZero 等算法就是明证,它们将规划过程整合到参数搜索策略中。AIXI 是通用贝叶斯最优代理,它利用通过全面搜索进行规划作为寻找最优策略的主要手段。在这里,我们定义了一个替代的通用贝叶斯代理,我们称之为 Self-AIXI,与 AIXI 相反,它最大限度地利用学习来获得良好的策略。它通过自我预测自己的动作数据流来实现这一点,这些数据流的生成方式与其他 TD(0) 代理类似,是通过对当前的在策略(通用混合策略)Q 值估计采取动作最大化步骤来生成的。我们证明 Self-AIXI 收敛到 AIXI,并继承了一系列属性,如最大 Legg-Hutter 智能和自我优化属性。
在特定领域,AI已经超越了人类的表现。去年,斯坦福大学的研究人员利用AI通过正面X光扫描识别了14种不同的疾病。该系统的创建仅用了一个月的时间,AI的准确率超过了人类肺炎诊断师。这项研究发表在《科学》杂志上。9 2017年,一个名为AlphaZero的人工神经网络系统在不到24小时内就获得了国际象棋、将棋和围棋超人水平的表现。这是在除了游戏规则之外没有其他领域知识的情况下完成的。10 2018年5月,谷歌首席执行官Sundar Pichai在Google I/O大会上发表主题演讲时,展示了一个名为Duplex的人工智能系统,引起了轰动。该系统能够通过电话安排预约,无需人工干预,但给人的印象是双方正在进行自然对话。人们很容易想象人工智能正在迅速变得超级智能,并因此获得所有在小说中被归因于它的积极和消极能力,因为自动驾驶汽车和听起来像人类的机器人等人工智能奇迹层出不穷。当然,情况根本不是这样
人工智能 (AI) 是一项变革性技术,相当于人类文明早期的火。它是一种可用于解决复杂问题、做出预测、自动执行任务和提高生产力的工具。但就像火一样,它具有双重性质,既可能带来好结果,也可能带来坏结果。本课程不需要任何技术知识,专为希望领导在现实世界中部署 AI 系统、管理数据科学和设计团队以及建立和投资 AI 公司的人士而设计。本课程的目标是建立对 AI 可以做什么、机器学习如何工作、这些工具成功和失败的地方以及如何应对其道德影响的直觉。我们将探索广泛的商业应用,研究包括 ChatGPT、Midjourney、DeepBlue、Watson、AlphaZero、Twitter 和 TikTok 背后的推荐系统等在内的工具,并讨论在这些工具的帮助下管理人类团队的最佳实践。本课程是一门基于讲座的课程,包括基于案例的讨论、个人作业、期中考试和期末小组项目。最后,您应该成为识别有前景的用例、评估当前的局限性和识别潜在陷阱的专家,以便您能够应用人类和机器思维伙伴关系来发展新业务并颠覆任何领域的大师。
摘要 由于产品频繁变化,大规模定制要求缩短制造系统的响应时间。系统动态性的增加对灵活性提出了更高的要求,尤其是对装配过程,因为复杂性在价值创造的最后一步不断积累。与传统的专用装配线方法相比,灵活且动态互连的装配系统可以满足日益增长的需求。这类系统中的高复杂性和动态环境导致对实时在线控制和调度解决方案的需求。在在线调度的决策中,预测可用操作后果的能力至关重要。在实时环境中,运行大量离散事件模拟来评估操作如何展开需要太多的计算时间。人工神经网络 (ANN) 是一种可行的替代方案,可以快速评估生产状态的潜在未来性能价值,以进行在线生产规划和控制。它们可以预测性能指标,例如在当前生产状态下的预期完工时间。利用人工智能 (AI) 游戏算法的最新进展,创建了一个基于 Google DeepMind 的 AlphaZero 的装配控制系统。具体来说,ANN 被纳入到该方法中,它建议有利的工作路由决策并预测行动的价值。结果表明,训练后的网络预测有利行动的准确率超过 95%,估计完成时间的误差小于 3%。