将右侧的负贡献与已知校正与有效光子质量[2] m 2 eff进行比较VAC。pol。= - (44 /135)α2Ω2B 2 0 / m 4 E我们看到数值因子不同35%。预期这种差异是因为在[2]中对光子质量的负贡献是针对各向同性情况的,在各向同性情况下,电子可以在所有三个空间方向上自由移动,而在此处考虑的各向异性情况下,电子仅沿磁场线移动。因此,我们保留了等式中的角度依赖性。(19)对于共振条件。与我们的工作有关的一个重要问题是,诸如上面的详细处理范围是修改了本文中简单的假设。为了获得答案,让我们考虑m a a ≪Ωp,使得仅在等离子体频率和磁场的负贡献之间取消时,可以进行谐振转换(在主论文中称为“双镜头效应”)。忽略(19)中的m 2一个术语,可以将方程式重写为
佛罗里达大学的物理系,美国佛罗里达州盖恩斯维尔市32611 B佛罗里达州盖夫斯维尔B物理学和天文学,加的夫大学,CF24 CF24 3AA CADDIFF,WALES,UK C DEUTSCHES ELEKTRONEN-SYKTRONEN-SYNCHROTRON DESY,NOTKERST,NOTKERST。85,22607汉堡,德国D MAX-PLANCK-INSTITUT FURTITATITSPHYSIK(Albert-Einstein-Institut)和Leibniz Universt
便携式设备是 2003 年第一次自主和拉格朗日平台和传感器 (ALPS) 会议的推动因素。这次会议是在 21 世纪初期举行的,当时有几种关于如何观察海洋的相互竞争的想法。当时的观测资源相对丰富,而且在千禧年左右进行了许多规划演习。21 世纪初期已经取得了许多成功,全球漂流者计划和 Argo 剖面浮标阵列正在进行中。水下滑翔机刚刚开始用于科学而不是工程测试。螺旋桨驱动的自主水下航行器 (AUV) 开始得到广泛使用。小型化趋势导致传感器可用于广泛的物理和生物地球化学变量。无论是有意还是无意,ALPS 会议预示着自主观测的快速增长,这从根本上改变了观测海洋学。
在2021年至2024年之间,欧洲的无代码工具的采用已大大增长。到2023年,使用无代码或低代码平台进行了欧洲的65%以上的应用程序开发。
根据《家庭教育权利和隐私法案》(FERPA)的定义,个人身份信息(PII)包括但不限于学生姓名;学生家庭成员姓名;学生或学生家庭住址;个人识别信息,如学生社会保险号、学生编号或生物特征记录;其他间接识别信息,如学生出生日期、出生地和母亲的娘家姓;其他单独或组合在一起与特定学生相关或可相关的信息,这些信息可让学校社区中不了解相关情况的合理人员以合理的确定性识别学生;或者教育机构或机构合理认为知道与教育记录相关的学生身份的人员所要求的信息。
摘要。在预计极端预言的预计增加之后,例如高纬度地区或高海拔高度时,寒冷地区可能会增加极端降雪。相比之下,在低至中等区域中,由于变暖条件,预计经历降雨而不是降雪的可能性会增加。然而,在山区,尽管可能存在这些对比趋势,但根据海拔的趋势,量化的降雪变化仍然很差。本文评估了在法国阿尔卑斯山的平均年度最大值和100年回报水平的大降雪和极端降雪的预计变化,这是海拔和全球温暖水平的函数。我们将最近的方法基于具有非平稳性极值模型的年度最大值的肛门,以从代表性的8.5(RCP8.5)场景下的20个调整后的一般循环模型 - 区域气候模型(GCM – RCM)对。对于法国阿尔卑斯山的23个地块中的每一个,在水文意义上(8月1日至7月31日)的最大值是从1951年到2100,每300 m的高度在900至3600 m之间。依赖于按块量表和所有按摩中的量表和平均年龄计算出的相对或绝对变化(在此对应于当前的气候条件(在此对应于 + 1℃)。在 + 4℃,平均年度最大值和100-总体而言,预计每日平均降雪年度最大值将降低到3000 m以下,并增加到3600 m以上,而100年的回报水平预计将降低到2400 m以下,并增加到3300 m以上。在介于两者之间的高度上,值平均预计会增加,直到 + 3℃全球变暖,然后降低。
摘要。地表能量平衡是影响地面热状况的关键因素。随着气候变化,了解地表和地下各层中各个热通量的相互作用及其对多年冻土热状况的相对影响至关重要。分析了一组独特的高海拔气象测量数据,以确定瑞士阿尔卑斯山三个山地多年冻土站点(Murtèl–Corvatsch、Schilthorn 和 Stockhorn)的能量平衡,这些站点自 1990 年代末以来一直在瑞士多年冻土监测网络 (PERMOS) 框架内收集数据。所有站点都配备了四分量辐射、空气温度、湿度、风速和风向以及地面温度和积雪高度的传感器。这三个站点的表面和地面物质成分以及地面冰含量差异很大。能量通量是根据二十年的实地测量计算得出的。虽然辐射收支和地面热通量的确定相对简单(通过钻孔内的四分量辐射传感器和热敏电阻测量),但湍流显热和潜热通量的确定存在较大的不确定性。我们的结果表明,Murtèl–Corvatsch(1997–2018 年,海拔 2600 米)的平均气温为 −1.66 ◦ C,在测量期间上升了约 0.8 ◦ C。在 Schilthorn 站点(1999–2018 年,海拔 2900 米),测得的平均气温为 −2.60 ◦ C,平均上升了 1.0 ◦ C。Stockhorn 站点(2003–2018 年,海拔 3400 米)记录到的气温较低,平均为 −6 ◦ C。 18 ◦ C 并增加了 0.5 ◦ C。测量到的净辐射作为地表最重要的能量输入,显示出显著的差异,Murtèl–Corvatsch 的平均值为 30.59 W m − 2,Schilthorn 的平均值为 32.40 W m − 2,Stockhorn 的平均值为 6.91 W m − 2。使用鲍文比方法计算的湍流通量显示所有站点的值约为 7 到 13 W m − 2,使用总体方法计算的湍流通量显示所有站点的值约为 3 到 15 W m − 2。在融化积雪所用的能量方面观察到了很大的差异:在 Schilthorn 计算出的值为 8.46 W m − 2,在 Murtèl–Corvatsch 为 4.17 W m − 2,在 Stockhorn 为 2.26 W m − 2,反映了三个站点积雪高度的差异。总体而言,我们发现不同地点的能量通量存在相当大的差异。这些差异有助于解释和阐释大气变暖的原因。我们认识到净辐射和地面热通量之间存在很强的关系。我们的研究结果进一步证明了长期监测的重要性,以便更好地了解地表能量平衡成分的变化对永久冻土热状况的影响。所提供的数据集可用于改进永久冻土建模研究,例如,提高对永久冻土融化过程的了解。此处显示和描述的数据可在以下网站下载:https://doi.org/10.13093/permos-meteo-2021-01 (Hoelzle et al., 2021)。
为此,主要思想是使用“ Tuwmodel”的概念水文模型的“新版本”来说明水和洪水传播的巴辛间传播(从上游流域到下游流域),通过实施基于NASH-Cascade模块的引入新路由程序。在测量站点使用不同的校准策略来估计最佳模型参数。然后将基于机器学习的区域化方法(Hydropass)应用于在Ungaiged地点推断模型参数以进行水文流量预测。
a Laboratory of Hydraulics, Hydrology, and Glaciology (VAW), ETH Zurich, H ¨ onggerbergring 26, Zurich 8093, Canton Zurich, Switzerland b Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf 8903, Canton Zurich, Switzerland c WSL Institute for Snow and Avalanche Research SLF,Flüelastrasse11,Davos Dorf 7260,Canton Grison,瑞士D气候变化,高山地区的极端和自然危害,CERC研究中心CERC,Flüelastrasse11,Davos Dorf 7260,Canton Grison,Canton Grison,瑞士E研究院E研究所E andarta for National for National for Geo-Hyological for National for Geo-Hyological for National for Geo-Hyological for Cance,National for contara for National for Geo-Hyological of Corcepand, Torino 10135,意大利f g´eoazur,observatoire de la c ˆ ote d'Azur,Universit'e c fout瑞士苏黎世,气候变化影响和风险在人类世界(C - CIA),日内瓦大学环境科学研究所,66 Boulevard Carl - Vogt - Vogt - Vogt,日内瓦,日内瓦,1205年,Canton Geneva,Canton Geneva,史威尔郡,IMR 6042 CNR,UMR 6042 CNR,CLERMIT-630 CLERMENT-CLERMENT-CLERMENT-CLERMONT,CLERMONT,CLERMONT,CLERMONT,CLERMONT,CLERMONT,CLERMONT AUVERER,AUVERER,AU u.ant au u.ant,法国J umr ige,Inrae,CNRS,IRD,Grenoble INP,Grenoble Alpes,2 Rue de la Papeterie,Saint Martin d'H`H`H`H`H`H`H`H`H`H`H`38400了,法国K地理技术工程学院Eth Zurich,Sonneggstrasse 5,苏黎世8092,瑞士广州苏黎世M山风险工程研究所,土木工程和自然危害系,Boku University,Peter Jordanstr。82,维也纳1190年,奥地利N Edytem实验室,大学e de Savoie,CNRS,5,Bd de la Mer Caspienne,Le Bourget Du Lac,Cedex,Cedex,73376,法国o农业,森林和食品科学学院瑞士州伯恩,瑞士P Dendrolab。