我们知道您的组织面临着巨大的成本压力。我们知道运营和监管环境比以往任何时候都更加复杂。我们了解在出租时提供地板覆盖物或在租约变更时保留现有地板覆盖物的已知风险和成本。您应该根据可用资源决定房产的质量。然而,我们的研究表明,不提供地板覆盖物可能会对您作为房东造成损害。
数字孪生有望减少对物理原型的需求,优化设计,并帮助使产品更智能、更互联、更可持续。它们有可能成为从概念到生产再到服务(整个产品生命周期)的单一事实来源。这是航空航天和国防工业的一项变革性技术,以创纪录的速度推动创新。但采用数字孪生的过程可能令人生畏。数字孪生的基本组成部分:模拟、高性能计算 (HPC) 和数据需要打破它们的孤岛,融合它们的流程,并实时利用它们围绕资产的协作。
添加性制造的晶格结构的设计和优化:晶格结构提供了许多理想的特性,例如轻质和良好的热性能。由于其多孔性质以及促进组织与小梁结构融合的能力,它们在生物医学植入物中也是非常可取的。Optistruct具有独特的解决方案,可以根据拓扑优化设计此类晶格结构。随后,可以在晶格束上进行大规模尺寸优化研究,同时结合了详细的性能目标,例如应力,屈曲,位移和频率。
从2002年,食品药物管理局(FDA)批准的成功神经外科手术后,深脑刺激(DBS)已被用于治疗各种神经系统疾病,例如帕金森氏病,肌张力障碍,肌张力障碍,基本颤抖,癫痫,癫痫和慢性疼痛。它通过植入神经递质的植入,这些神经递质使用电极向大脑的某些部位发送电脉冲,然后将其起作用以调节异常脉冲。在治疗帕金森氏病的治疗中,它用于减少患者对左旋多巴的依赖性(一种用于治疗帕金森氏症治疗帕金森氏病的多巴胺能药物),这通常是一种很好的治疗方法,但患者可以在扩展后对其作用产生抵抗力。它最终停止工作,药物也有副作用,使DBS成为更具吸引力的选择。
20 世纪初发明的用于近似解决边界值问题的 Ritz-Galerkin 方法假设近似解的函数是定义在整个相关域上的解析函数。在实际应用中,这些函数要么是三角函数,要么是无限平滑的多项式,即它们有无数个导数。此类函数有两个主要问题。首先,很难或不可能构建先验满足任意域边界上基本边界条件的函数(在结构分析中,这些条件表现为位移约束)。其次,基于此类函数构建的方程系统病态且数值不稳定,无法以足够高的精度解决实际问题。